Página principal

Una faceta desconocida de einstein


Descargar 252.39 Kb.
Página1/4
Fecha de conversión18.07.2016
Tamaño252.39 Kb.
  1   2   3   4

UNA FACETA DESCONOCIDA DE EINSTEIN


Autor: ELIEZER BRAUN

INTRODUCCIÓN

I. ALGO SOBRE LA TERMODINÁMICA.

II. PRIMERAS MEDICIONES DEL CALOR ESPECÍFICO

III. ¿ QUÉ NOS DICE LA TEORÍA CINÉTICA ?

IV. OTRAS EXPERIENCIAS Y RESULTADOS

.....AL INVENTARSE LOS PRIMEROS REFRIGERADORES



V. EL TRABAJO DE NERNST. LA TERCERA LEY

.....DE LA TERMODINÁMICA



VI. RESUMEN DE LA SITUACIÓN A PRINCIPIOS DEL SIGLO XX

VII. ALGUNAS CONSIDERACIONES SOBRE LA NATURALEZA

.....DE LA LUZ



VIII. OTRA VERTIENTE. PLANCK Y LA TEORÍA CUÁNTICA

IX. EINSTEIN Y EL EFECTO FOTOELÉCTRICO

X. EINSTEIN DA LA LUZ AL ENIGMA DE LOS CALORES ESPECÍFICOS

XI. REPERCUSIONES EN EL DESARROLLO CONCEPTUAL

.....DE LA TEORÍA CUÁNTICA



XII. LAS SIGUIENTES ETAPAS DE LA HISTORIA

INTRODUCCIÓN


Se presenta en este libro un aspecto poco conocido de la obra científica de Albert Einstein (l879-l955). La mayoría de la gente asocia el nombre de Einstein con la teoría de la relatividad. Efectivamente esta teoría, cuya primera parte —la teoría de la relatividad especial— fue presentada en 1905, constituyó un hito en la historia de la física que colocó a Einstein a la altura de Isaac Newton (1642-727) y de James Clerk Maxwell (1831-1879). Newton puso los fundamentos de la mecánica y Maxwell sintetizó genialmente la teoría del electromagnetismo.

Hacia fines del siglo pasado se creía que, en esencia, la física ya estaba hecha. Esto se puede ilustrar con una anécdota en la que interviene Max Planck, de quien hablaremos en este libro, cuando de joven, en 1874, se informaba sobre los estudios universitarios de física en la Universidad de Munich, Alemania. El representante de la institución trató de convencerlo de que escogiera otros estudios con el argumento de que "en la física ya estaba investigado todo lo esencial y que solamente quedaban por rellenar algunos huecos".

Es en este ambiente que Einstein revolucionó las ideas de la física publicando en 1905 la teoría de la relatividad. En este mismo año apareció, también bajo su firma, un trabajo sobre la naturaleza cuántica de la luz y, por si esto fuera poco, publicó además su famoso trabajo sobre el movimiento browniano.

Con la segunda publicación mencionada, Einstein inició, de hecho, como se verá en este libro, otra revolución con la teoría cuántica. A diferencia de lo que ocurrió con la relatividad, el conjunto de ideas de Einstein sobre los "cuanta" no fue fácilmente aceptado por sus colegas. Durante mucho tiempo Einstein estuvo solo. A pesar de eso, no se rindió sino que con grandes bríos publicó otro notable trabajo en 1907 en el que presentó la teoría cuántica de los calores específicos, generalizando las ideas ya expresadas en 1905 para aplicarlas también a la materia. Posteriormente, en 1909, fue el primero en hablar de la dualidad partícula-onda que presenta la naturaleza de la luz. En 1924 volvió a contribuir sobre este tema, pero ahora haciendo ver que también en la materia se da esta dualidad. Fue Einstein quien, de hecho, formuló algunas de las ideas esenciales de la teoría cuántica.

Una característica del enfoque que hacía Einstein al intentar resolver algún problema fue su interés, no tanto en los detalles muy particulares del sistema con el que estaba trabajando, sino en descubrir hechos generales y fundamentales. Así, al estudiar las características de la luz no se interesó particularmente en el efecto fotoeléctrico, sino en lo que podría descubrir sobre la naturaleza fundamental de la luz. Asimismo, al estudiar en 1907 el calor específico de sustancias a bajas temperaturas, no se interesó sólo en el comportamiento particular de esta cantidad, quiso ver si era posible pensar que también las sustancias materiales en general participaban de la llamada cuantización. De manera muy característica, trató modelos físicos bastante sencillos y de ellos sacó consecuencias muy generales.

De manera similar a lo que ocurre con la relatividad, con la teoría cuántica se enfrenta uno a efectos completamente extraños a nuestra experiencia cotidiana. Sin embargo, estos efectos los presenta la naturaleza y cualquiera que desee hacer una descripción de ella tendrá que confrontarlos. Fue Einstein el que tuvo la mente abierta para destacar los prejuicios mentales que tenemos y hacer ver que no se pueden aplicar a toda la gama de fenómenos que ocurren en la naturaleza. Cuestionó, además, lo que se suele llamar "el sentido común". Hoy en día, a pesar de que todavía nos parecen muy extrañas algunas de las ideas de la física cuántica, se la ha aplicado a tantos campos que ya no existe la menor duda de su validez. Es más, existe un buen número de aplicaciones prácticas que usamos cotidianamente que tienen su base en fenómenos cuánticos, entre las que podemos mencionar el láser, los transistores y chips de estado sólido que han dado un notable impulso a la microelectrónica, etcétera.

En este libro, al hablar de la contribución de Einstein a la física cuántica, estaremos reseñando en realidad el desarrollo de este campo desde sus inicios en 1900 hasta la culminación de su formulación final en 1926, periodo que forma uno de los capítulos más brillantes del pensamiento humano.

Para poder apreciar las ideas con las que se trabaja es necesario exponer sus antecedentes. En la formulación de la teoría cuántica, se dieron dos caminos completamente alejados uno del otro que, con el tiempo, Einstein hizo que convergieran. Uno, el de las propiedades termodinámicas de las sustancias, como por ejemplo el calor específico. El otro, completamente aparte del anterior, el de la radiación de luz y sus propiedades térmicas. Cada uno de estos campos se desarrolló en forma independiente, sin que se sospechara que los problemas irresolubles que se presentaban en cada uno de ellos tenían una causa común. Fue Einstein quien pudo aclarar estas cuestiones.

En vista de lo anterior y como una orientación, se revisarán algunos de los desarrollos históricos de ambos temas. Asimismo, se intentará explicar, de manera simple, los conceptos físicos involucrados, sin utilizar para nada las matemáticas.

En el capítulo I se presentan algunos conceptos de la termodinámica, como el calor específico que tendrá un papel importante en el desarrollo del relato. En el II se habla sobre las primeras mediciones que se hicieron de los calores específicos para algunas sustancias. Los resultados que así se obtuvieron intentaron ser fundamentados posteriormente en términos microscópicos por medio de la teoría cinética, tema que se trata en el capítulo III.

Hacia mediados del siglo pasado no había manera de disminuir apreciablemente la temperatura ya que todavía no existían los refrigeradores. Con el desarrollo de la termodinámica se pudieron diseñar y construir estos aparatos que, una vez disponibles, hicieron posible medir las propiedades termodinámicas de las sustancias a bajas temperaturas, y como se verá en el capítulo IV se encontraron contradicciones con las predicciones de la teoría cinética entonces conocida. Los resultados de estas mediciones fueron el fundamento de la formulación de la tercera ley de la termodinámica, tema que se trata en el capítulo V. En el VI se resume la situación que imperaba en este campo de la física hacia fines del siglo XIX.

Independientemente de lo anterior, otro campo de la física que se había estado desarrollando era el de la óptica en el que, entre otras cosas, se intentó entender la naturaleza de la luz. En el capítulo VII revisaremos algunas de las ideas más importantes al respecto, y en el VIII se tratan algunos fenómenos relacionados con la luz, como la radiación. Es justamente cuando trataba de explicar el comportamiento térmico de esta radiación que Max Planck se vio en la necesidad de formular una hipótesis, la cuantización de la energía, con la que se inició la física cuántica. En el capítulo IX se presenta la contribución de Einstein a lo que después se denominó explicación del electo fotoeléctrico. Con este trabajo se da por primera vez realidad física a la cuantización de la energía. En el capítulo X hablamos sobre la otra contribución fundamental de Einstein al hacer ver que una consecuencia de suponer que también la materia se cuantiza es el comportamiento experimental que muestra el calor específico de las sustancias a bajas temperaturas. El capítulo XI reseña las repercusiones que tuvo el pensamiento de Einstein al irse convenciendo sus colegas de la bondad de sus ideas. El capítulo XII detalla las subsecuentes etapas del desarrollo de la física cuántica, en las que Einstein tuvo un papel muy importante, tanto contribuyendo con novedosas ideas, como erigiéndose en crítico muy severo de las ideas presentadas por otros científicos.

I. ALGO SOBRE LA TERMODINÁMICA. ¿QUÉ ES EL CALOR ESPECÍFICO?

UNA experiencia muy común ocurre cuando ponemos al fuego una olla que contiene agua: después de cierto tiempo, el agua se calienta. Esto quiere decir que su temperatura aumenta. Se puede verificar fácilmente esta afirmación poniendo dentro del agua un termómetro. Nos daremos cuenta de que, efectivamente, la temperatura aumenta. También sabemos, de nuestra experiencia, que mientras más tiempo dejemos el agua sobre la llama, más aumentará su temperatura.

¿Cómo se puede describir este experimento que nos es tan familiar? En este caso hay una transferencia de calor de la llama al agua. Esto significa que la llama transfiere energía al agua. Claramente, mientras más tiempo dejemos el agua sobre la llama, más energía se transferirá, es decir, habrá mayor transferencia de calor. En estas circunstancias, el agua absorbe esta energía y como consecuencia, responde aumentando su temperatura.

Supóngase ahora que hacemos lo siguiente. Tomemos la misma cantidad, por ejemplo, un kilogramo, de dos sustancias distintas, digamos agua y aluminio (figura 1); las colocamos sobre una llama el mismo intervalo de tiempo, digamos quince minutos y ponemos cada una de las sustancias en contacto con un termómetro. Al principio ambas sustancias tienen la misma temperatura, por ejemplo, la ambiente (figura 1(a)). Al finalizar el intervalo de tiempo leemos los termómetros (figura (b)) y observamos dos cosas:




Figura 1. Distintas sustancias tienen distintas capacidades de absorber calor.

i) Las dos sustancias aumentaron sus temperaturas.

ii) Los aumentos que experimentaron cada una de las sustancias no fueron los mismos. Así, por ejemplo, el agua habría aumentado su temperatura en 12ºC, mientras que el aluminio en 55ºC.

Lo anterior nos indica que el agua y el aluminio absorbieron el calor que les transfirió la correspondiente llama. La cantidad de calor absorbida por cada una de las sustancias fue la misma, ya que estuvieron colocadas de la misma forma sobre llamas idénticas y durante los mismos intervalos de tiempo.

La segunda conclusión nos indica que cada una de las sustancias respondió de manera diferente a la misma cantidad de calor transferida. Una de ellas, el aluminio, experimentó un cambio de temperatura mayor que la otra sustancia, el agua.

La experiencia anterior nos hace ver que las sustancias tienen, entonces, una propiedad que es la de cambiar su temperatura a causa de una absorción de calor. Esta propiedad se mide por medio de la capacidad calorífica. Por tanto, la capacidad calorífica del agua es distinta a la del aluminio.

Por otro lado, nos damos cuenta que si colocamos en estufas idénticas, durante el mismo intervalo de tiempo, dos cantidades distintas de la misma sustancia, por ejemplo agua, cada una de las muestras aumentará su temperatura en cantidades distintas. Así por ejemplo, si colocamos en la misma estufa de antes 1 kg de agua y en la otra, 20 kg de agua, después de quince minutos la primera muestra habrá aumentado su temperatura en 12ºC, mientras que la Otra habrá aumentado solamente 0.6ºC. Esto es claro, pues las mismas cantidades de calor fueron transferidas a cantidades distintas de agua. A pesar de haber encontrado dos aumentos de temperatura distintos, no podríamos decir en este caso que las dos muestras de agua tienen distintas capacidades de absorber calor, pues ambas están formadas de la misma sustancia. Para poder hablar, sin riesgo de confusión, sobre la propiedad de absorber calor que tiene una sustancia se define el calor específico como la cantidad de calor que es necesario que absorba un gramo de una sustancia para aumentar su temperatura en 1ºC.

De lo anterior se puede afirmar que cada sustancia tiene un calor específico bien determinado. Los valores numéricos del calor específico de distintas sustancias son distintos. Así, por ejemplo, el calor específico del agua es

 


Calor específico del agua = 1caloría / gramo (°C)




Esto quiere decir que para que un gramo de agua aumente su temperatura un grado centígrado es necesario transferirle una caloría de energía térmica. El calor específico del aluminio es 0.219 caloría/gramo (*C), o sea, que para que un gramo de aluminio aumente su temperatura en 1ºC se tienen que transferir 0.219 calorías. De manera análoga, cada sustancia tiene un valor particular del calor específico.

Hasta este punto hemos hablado solamente del caso en que se transfiere calor de una fuente, como por ejemplo una llama, a una sustancia. En este caso la sustancia absorbe calor. También puede ocurrir que una sustancia transfiera calor a otra, por ejemplo, si se tiene un vaso con agua caliente y lo dejamos a la intemperie, sabemos que el agua se enfría. Es decir, el agua disminuye su temperatura. En este caso, el agua transfiere calor a la atmósfera. Se dice que el agua emitió calor. Al igual que en el caso de la absorción, se puede llegar al concepto de calor específico para la emisión, que sería el calor necesario que debe emitir un gramo de una sustancia para disminuir su temperatura en 1ºC. Pues resulta que los calores específicos tanto de absorción como de emisión de una sustancia son iguales. En consecuencia solamente se habla de calor específico sin especificar si es de absorción o de emisión.



II. PRIMERAS MEDICIONES DEL CALOR ESPECÍFICO

EL FíSICO y químico inglés Joseph Black (1728-1799) fue quien adelantó el concepto de calor específico. En el transcurso de sus investigaciones se dio cuenta de que diferentes cuerpos, de masas iguales, requerían de diferentes cantidades de calor para elevarlos a la misma temperatura. Así es como alrededor de 1760 inventó el concepto de calor específico. A pesar de que su trabajo no fue publicado sino hasta después de su muerte, en 1803, en sus clases de química en Edimburgo, durante el último tercio del siglo XVIII, enseñó la utilidad de su descubrimiento. Un buen número de científicos británicos recibieron parte de sus educación en Edimburgo y fue de esta manera que pudo propagar sus ideas al respecto.

Hacia fines del siglo XVIII, el científico francés Antoine Lavoisier (1743-1794) hizo los primeros intentos de medir el calor específico de algunos gases. Empleó métodos calorimétricos que proporcionaron resultados muy inciertos. Joseph Gay-Lussac (1778-1850) diseñó un interesante método para comparar calores específicos entre gases, cuyos resultados, sin embargo, malinterpretó. Concluyó erróneamente de sus experimentos que volúmenes iguales de gases tenían el mismo calor específico. Fue Gay-Lussac quien posteriormente, usando otro método, concluyó que volúmenes iguales de hidrógeno, bióxido de carbono, aire, oxígeno y nitrógeno tenían el mismo valor de sus calores específicos. Sin embargo, no pudo dar el valor numérico. Estos resultados son correctos, excepto para el bióxido de carbono.

Casi simultáneamente con los hechos anteriores, F. Delaroche y J. E. Bérard hicieron determinaciones directas de los calores específicos del aire, oxígeno, hidrógeno, monóxido de carbono, óxido nitroso y etileno a la temperatura de 100ºC, usando un calorímetro mucho más refinado que los entonces conocidos y proveyeron los primeros resultados confiables. Efectivamente, encontraron que volúmenes iguales de los entonces llamados gases permanentes (aire, oxígeno y monóxido de carbono) tenían los mismos calores específicos. Lo que no pudieron establecer era cómo variaba el calor específico al cambiar la temperatura del gas.

En el año de 1819 P. L. Dulong y A. T. Petit publicaron el trabajo titulado Los átomos de todos los cuerpos simples tienen exactamente la misma capacidad para el calor. En este trabajo presentaron extensivos resultados experimentales hechos en sustancias monoatómicas, haciendo ver que si se define adecuadamente el calor específico, todas ellas tienen el mismo valor. La forma en que ellos definieron el calor específico fue algo distinta a la definición que presentamos en el capítulo anterior. En efecto, arriba se dijo que se tomó un gramo de la sustancia y se vio cuánto calor había que transferirle para aumentarle su temperatura en 1ºC. Sin embargo, hablando en lenguaje moderno, si se toma un gramo de dos sustancias distintas, cada una de ellas tiene un número distinto de átomos. Por tanto, la comparación entre los valores de sus calores específicos no se está haciendo en igualdad de condiciones. Fueron Dulong y Petit quienes se dieron cuenta de esto y obtuvieron, a partir de sus resultados experimentales, que si en lugar de un gramo se toman muestras de cuerpos distintos que tengan el mismo numero de átomos, entonces los calores específicos de todos ellos son iguales. A este resultado se le ha conocido como la ley de Dulong-Petit. Es claro que dos muestras de sustancias distintas que contienen el mismo número de átomos tienen masas distintas, ya que los átomos de cada muestra tienen masas distintas. Así, por ejemplo 32 g de oxígeno tienen el mismo número de partículas que 2 g de hidrógeno. En el lenguaje de la química actual diríamos que se escogen muestras que tengan el mismo número de moles. Por tanto, el calor específico que mencionan Dulong y Petit es el referido al mismo número de moles y no a la misma masa.

En consecuencia, se puede expresar la ley de Dulong y Petit como sigue: "Los calores específicos molares de todas las sustancias son iguales." Esto es equivalente a decir que el calor por partícula que es necesario dar a un cuerpo para incrementar su temperatura en 1ºC es el mismo para todas las sustancias.

Posteriormente, en los años de 1840 y 1841, V. Regnault realizó una serie extensiva de mediciones más precisas de los calores específicos molares de muchas sustancias confirmando la ley de Dulong-Petit. Nadie pareció dudar de que esta ley era correcta para un buen número de sustancias.

Sin embargo, en esas épocas se sabía ya que existen sustancias, como el bióxido de carbono, para las cuales la ley de Dulong-Petit no predice el valor correcto del calor específico. Curiosamente a estas discrepancias no se les prestó mayor atención durante mucho tiempo.

Todos los resultados arriba mencionados fueron encontrados teniendo las sustancias temperaturas iguales a la ambiente o superiores, pues en esas épocas éstas eran las únicas temperaturas que se podían alcanzar en un laboratorio. Era relativamente fácil aumentar la temperatura de un cuerpo, pero lo que era difícil era bajarla mucho, ya que no existían entonces medios para ello.

Ésta era la situación experimental hacia mediados del siglo pasado. La explicación que se dio a la ley de Dulong-Petit fue proporcionada con el desarrollo concurrente de la teoría cinética que se estaba dando en ese entonces.



III. ¿QUÉ NOS DICE LA TEORÍA CINÉTICA?

AL EXPRESAR la ley de Dulong-Petit, como resumen de un número importante de resultados experimentales, no se ha hecho ninguna consideración específica sobre la estructura microscópica de las sustancias que están bajo estudio. Es decir, tal como se han presentado las cosas, no ha tenido ninguna relevancia que las sustancias estén formadas por átomos o no. Se dice que estos resultados son macroscópicos. Sin embargo, por otro lado se sabe que efectivamente las sustancias están formadas por átomos, por lo que uno podría preguntarse lo siguiente: ¿qué efecto en las propiedades macroscópicas de las sustancias tiene este hecho? Con más precisión, si uno supone que las partículas microscópicas se mueven siguiendo las leyes de la mecánica de Newton, entonces ¿es el comportamiento microscópico compatible con las leyes macroscópicas que rigen el comportamiento de las sustancias? La parte de la física que ha estudiado esta pregunta es la teoría cinética.

Hagamos un breve paréntesis para presentar el contexto histórico a mediados del siglo pasado.

Desde la antigüedad griega muchos pensadores elucubraron acerca de la composición de la materia. Diversas hipótesis se propusieron, sin que, en general, tuvieran verdaderas bases científicas. Además, estas hipótesis tampoco tuvieron aceptación general. Fue de hecho hasta principios del siglo XIX que con los trabajos de John Dalton (1766-1844) se empezaron a dar los primeros pasos serios en el estudio de la estructura atómica de la materia. Posteriormente también contribuyeron de manera muy importantes personas como Gay-Lussac, Amedeo Avogadro (1766-1856) y Jöns Jacob Berzelius (1779-1848). Así, hacia mediados del siglo pasado ya se tenía un adecuado, aunque no completo, cuerpo de teoría que implicaba que la materia estaba compuesta de partículas microscópicas, llamadas átomos. Es de mencionar que en esa época esta hipótesis no fue aceptada, de ninguna manera, por la mayoría de los científicos. Fueron relativamente pocos los que la aceptaron.

Hacia mediados del siglo XIX se presentaba la siguiente situación. Por un lado se habían planteado las leyes de la termodinámica, que se refieren a aspectos macroscópicos del comportamiento de las sustancias, y por el otro se vislumbraba cada vez con mayor claridad que la materia estaba compuesta de átomos. Surge entonces la pregunta de cómo conciliar estas dos posiciones. Dicho en otras palabras, la cuestión es: si la materia, en efecto, está compuesta de partículas microscópicas, entonces ¿qué consecuencias macroscópicas tiene el comportamiento microscópico de una sustancia?

Este problema ya se había planteado desde el siglo XVII, entre otros por Robert Boyle (1627-1691). En el siglo XVIIl continuaron trabajando en él Leonhard Euler (1707-1783) y Daniel Bernoulli (1700-1782). Estos estudiosos obtuvieron algunas consecuencias a las que, sin embargo, no se les prestó la debida atención a causa de que, por un lado, no se aceptaba la hipótesis atómica y por el otro, porque muchos de los conceptos utilizados eran bastante oscuros.

Fue la primera mitad del siglo XIX cuando se empezaron a dar los primeros pasos en firme. Varios trabajos de J. Herapath presentados alrededor de 1820 y de J. J. Waterston alrededor de 1845 volvían a tomar la cuestión. Sin embargo, fue hasta casi mediados de siglo que este tipo de teorías tuvo un feliz renacimiento. En efecto, entre 1850 y 1875 August Krönig (1822-1879), Rudolph Clausius (1822-1888), James C. Maxwell y Ludwig Boltzmann (1844-1906) desarrollaron las bases de la moderna teoría cinética de la materia. Supusieron que las sustancias estaban compuestas de átomos y a partir de su comportamiento microscópico pudieron obtener como consecuencia algunas propiedades macroscópicas. En particular pudieron explicar diversos fenómenos, así como fundamentar varios resultados que ya se conocían en la termodinámica. Se pudieron calcular, por ejemplo, propiedades tales como el calor específico, la conductividad térmica, la viscosidad de gases poco densos en términos de las propiedades de los átomos que los constituyen.

Asimismo, hemos de mencionar que, entre otras cosas, Maxwell obtuvo, también como resultado de estos trabajos, la distribución de las velocidades de los átomos en un gas en equilibrio. Esta cantidad indica cuántos átomos de un gas tienen cierto valor de la velocidad. Así, se puede saber cuál es la velocidad que tiene la mayoría de los átomos. Maxwell encontró cómo depende esta distribución de la temperatura del gas, de la masa del átomo, etc. A esta distribución se le llama maxwelliana. En la figura 2 se muestra una gráfica de esta distribución a una temperatura fija. Con este resultado, Maxwell pudo obtener las magnitudes de las velocidades que tienen las partículas en un gas. Por ejemplo, encontró que a temperatura ambiente (t = 30ºC) la velocidad Vm (figura 2) que tienen la mayoría de lo átomos en un gas de nitrógeno es aproximadamente igual a 600 m/s, o sea, 2 160 km/h.



Figura 2. Forma de la distribución de las velocidades de las partículas de un gas en equilibrio. Las partículas no tienen la misma velocidad. Esta distribución se llama maxwelliana, en honor de su descubridor.

 

El mismo Maxwell realizó varios experimentos en los que verificó algunas de las predicciones teóricas hechas para la conductividad y la viscosidad de un gas poco denso. Años después se verificó experimentalmente que un gas en equilibrio efectivamente tiene la distribución de velocidades predicha por Maxwell.



Si se conoce cómo están distribuidas las velocidades de las partículas de un gas, uno puede encontrar entonces el promedio de la energía cinética de cada una de las partículas. Esto lo hizo por primera vez Maxwell en 1859, encontrando lo siguiente. Si el gas está en equilibrio a una temperatura absoluta T, 1 entonces cada partícula que compone el gas tiene una energía igual a (3kT/2). Aquí k es una cantidad constante, llamada la constante de Boltzmann 2 . Este resultado significa que, en promedio la energía del gas se distribuye de manera uniforme entre las partículas que lo componen. A esto se le llama el principio de equipartición de la energía.

Posteriormente, en 1868, Boltzmann generalizó este teorema al caso en que las partículas del gas no fueran rígidas —que es una suposición que había hecho Maxwell—, sino que también tuvieran movimientos internos.

Veamos este principio con un poco más de detalle. De hecho, de la forma expresada arriba, solamente es válido para gases compuestos de partículas que solamente tienen un átomo, por ejemplo, neón o argón. En este caso cada uno de ellos solamente tiene posibilidad de movimiento traslacional, y dado que se puede mover en tres dimensiones se dice que tiene tres grados de libertad. El principio de equipartición de la energía dice, con más precisión, que la energía se reparte de manera tal que cada grado de libertad tiene asociada una energía igual a (kT/2). Como un átomo tiene tres grados de libertad, en total tiene asociada una energía igual a 3 x (kT/2) = (3kT/2), que es el valor predicho por Maxwell.

Una vez conocida la energía de un gas monoatómico (de un solo átomo) se puede encontrar su calor específico. Se encuentra como consecuencia del principio de equipartición de la energía que cada grado de libertad contribuye con (k/2), o sea que el calor específico por cada átomo es entonces igual a (3k/2). Nótese que esta cantidad no depende de la temperatura, es decir, es una cantidad constante. Además, este valor corresponde justamente al que se encuentra de las mediciones experimentales. Como se recordará, éste es precisamente el enunciado de la ley de Dulong-Petit.

De esta manera se pudo fundamentar, a partir de las propiedades microscópicas de las sustancias, la ley macroscópica de Dulong-Petit, por lo menos para gases monoatómicos.

Una vez encontrado el principio de equipartición de la energía se aplicó a otros gases distintos a los monoatómicos. El siguiente paso es considerar gases formados de moléculas constituidas por dos átomos, es decir, gases diatómicos. En este caso, el número de grados de libertad de cada una de estas partículas es 6, ya que tres de ellos corresponden al centro de masa de la molécula (que corresponde al movimiento traslacional de la molécula como un todo); dos más corresponden a los ángulos necesarios para dar la orientación en el espacio de la línea que une a los átomos, por ejemplo  y  de la figura 3; uno más corresponde a la distancia entre los átomos. Aplicando el principio de equipartición de la energía se obtiene que el calor específico de este tipo de gas sería 6*(k/2)=3k. Si ahora se compara este valor con el medido experimentalmente, resulta que ya no hay concordancias. El valor medido es menor que esta predicción.



Figura 3. La dirección de la línea que une a los dos átomos de una molécula diatómica queda completamente especificada si se dan los ángulos y mostrados.

De manera análoga, al aplicar el principio de equipartición de la energía al caso de gases compuestos de moléculas con más de dos átomos, es decir, poliatómicas, resulta que se encuentra para el calor específico un valor constante que no concuerda con lo que se mide experimentalmente.

Otro sistema al que se aplicó el principio de equipartición de la energía fue a los sólidos. Aquí las partículas que componen el sólido se encuentran localizadas en un arreglo geométrico regular que se llama la red cristalina. En la figura 4 se muestra esquemáticamente una red cristalina en dos dimensiones. Las partículas pueden oscilar alrededor de estos puntos. En este caso se encuentra, aplicando el principio de equipartición de la energía, que el calor específico por cada partícula es igual a 3k, que concordaba muy bien con los valores medidos en muchos sólidos.



Figura 4. Esquema de una red o malla cristalina en dos dimensiones.

Por tanto, la teoría cinética predecía valores de calores específicos que, por lo menos en algunos sistemas físicos, concuerdan muy bien con los valores medidos experimentalmente. Solamente los casos de los gases diatómicos y poliatómicos no pudieron ser explicados por la teoría cinética entonces existente. Hay que notar que son justamente estas sustancias sobre las que había ya discrepancias entre el enunciado de la ley de Dulong-Petit y los valores medidos (ver final del capítulo II).

 

NOTAS

1 La temperatura T en la escala absoluta (medida en grados Kelvin, ºK) está relacionada con la temperatura t (medida en grados centígrados, ºC) de la escala de Celsius, que nos es familiar, por medio de la fórmula T= 273 + t.

2 El valor de k es 1.38 x 10-23 joule / ºK



IV. OTRAS EXPERIENCIAS Y RESULTADOS AL INVENTARSE LOS PRIMEROS REFRIGERADORES

LOS hechos descritos en los capítulos anteriores exhiben la situación que existía alrededor de los años de 1860. En particular, las mediciones que se habían llevado a cabo eran a temperaturas ambientes o mayores, ya que en ese entonces no existía manera de disminuir la temperatura.

Hacia 1870 las cosas empezaron a cambiar. En ese año el ingeniero alemán Carl von Linde (1842-1934) conoció un trabajo científico que trataba del retiro de calor de una sustancia por medios mecánicos. En 1876 sacó su primera patente de un refrigerador de amoniaco. Es así que se inició la era de los aparatos con los que se podía disminuir la temperatura. Poco a poco se logró obtener temperaturas cada vez más bajas. Ya en el año de l895 usando un efecto termodinámico, el Joule-Thomson, se pudo enfriar una muestra de aire y llegar a formar aire líquido. Esto ocurre a una temperatura de alrededor de 196ºC bajo cero.

Una vez disponiendo de aparatos con los que se podía disminuir la temperatura se empezaron a medir diferentes propiedades termodinámicas de las sustancias a temperaturas cada vez menores. En particular, se empezaron a medir calores específicos a temperaturas menores que la ambiente.

En 1872 F. H. Weber, en Alemania, hizo mediciones del calor específico del carbón a una temperatura de 50ºC bajo cero. Encontró que el calor específico no tenía, a esta temperatura, el mismo valor que tenía a temperatura ambiente. Encontró que el valor del calor específico disminuye al disminuir la temperatura. Esto significa que el valor del calor específico varía al cambiar la temperatura. Este hecho contradice la ley de Dulong-Petit que es consecuencia del principio de equipartición de la energía, que nos dice que el valor del calor específico debe ser siempre el mismo, sin importar a qué temperatura se encuentre la sustancia.

Posteriormente, en 1886, L. Pebal y H. Jahn midieron el calor específico del antimonio y, en 1892, L. Schuz lo midió en varias amalgamas, encontrando discrepancias con la ley de Dulong-Petit. Más adelante, existiendo ya máquinas refrigeradoras con las que se alcanzaban temperaturas mucho más bajas, se lograron medir los calores específicos de muchas y variadas sustancias a bajas temperaturas. De hecho, a principios del siglo XX se llegaron a hacer mediciones a temperaturas no muy lejanas del llamado cero absoluto,1 que corresponde a 273ºC bajo cero.

 




Figura 5. Valores experimentales de los calores específicos de la plata , el cobre (X) y el aluminio (), a distintas temperaturas. Nótese que a bajas temperaturas estos valores no son constantes. Solamente a altas temperaturas tienden a tener un valor constante.

Los resultados de todos estos experimentos indicaban que a medida que la temperatura de una sustancia disminuye, también lo hace su calor específico. En la figura 5 se muestran algunos resultados experimentales obtenidos con la plata, el cobre y el aluminio.

En 1898 U. Behn resumió la situación como sigue: "La representación gráfica del decrecimiento del calor específico con la temperatura parece sugerir que los calores específicos en la cercanía del cero absoluto tienen el mismo valor, extremadamente pequeño (0?)."

Como nos podemos dar cuenta, estos resultados contradicen directamente las predicciones hechas por la teoría cinética desarrollada por Maxwell y Boltzmann. En particular, se ve que una de sus predicciones, a saber, el principio de equipartición de la energía, no se sostiene al compararlo con resultados experimentales.

 

NOTAS

1 Esta es la mínima temperatura que se puede lograr.



V. EL TRABAJO DE NERNST. LA TERCERA LEY DE LA TERMODINÁMICA

DURANTE los primeros setenta y cinco años del siglo XIX los principales desarrollos en el área de la química ocurrieron en los campos de la química inorgánica y orgánica. Tanto la química como la física se desarrollaron en el mencionado siglo a paso veloz. Hay que hacer notar que hubo muy poco contacto entre los científicos que trabajaban en estas dos disciplinas. Sin embargo, los desarrollos que ocurrieron en la termodinámica, relacionados con la energía y su conservación, llamaron la atención de algunos químicos que trabajaban con la afinidad y las velocidades de reacción.

Fueron estos estudios los que dieron lugar, con el tiempo, al establecimiento de la fisicoquímica. Así, en 1850 el químico Ludwig Wilhelmy mostró que la velocidad de la hidrólisis del azúcar de caña se podía calcular usando una ecuación matemática, siendo ésta la primera ocasión en que se usaba una fórmula matemática para expresar un proceso químico.

Casi simultáneamente, las ideas sobre la termodinámica desarrolladas por los físicos empezaron a tener cabida en la química. A esto contribuyeron los trabajos hechos alrededor de 1850 por G. H. Hess en Rusia, Pierre Engene Berthelot en Francia y Julius Thomsen en Dinamarca sobre los calores de reacción. Fue A. F. Horstmann el primero que usó en 1869 la segunda ley de la termodinámica en los fenómenos químicos. El trabajo de Josiah Willard Gibbs en Estados Unidos, realizado en 1876-1878, sobre las condiciones de equilibrio de mezclas de sustancias fue aplicado en la química unos veinte años después.

Estos trabajos y otros más representaron un interés creciente en las propiedades físicas de los compuestos químicos. El químico Wilhelm Ostwald escribió en 1888 el primer libro de texto de fisicoquímica en el que organizó esta rama de la química. Además, Ostwald junto con J. vant' Hoff y Svante Arrhenius establecieron en 1887 la primera revista de investigación en este campo, el Zeitschriff für physicalische Chemie. De esta manera, la fisicoquímica se elevó al mismo nivel que las otras ramas de la química como la inorgánica.

Fue en el mismo año de 1887 que Walther Hermann Nernst (1864-1941) empezó a trabajar como asistente de Ostwald en la Universidad de Leipzig. Lo hizo justamente en la época en que se desarrollaban las interesantes discusiones sobre la fisicoquímica. El ambiente en que trabajó lo estimuló mucho y empezó su trabajo de inmediato. Inició su trabajo en la teoría de celdas galvánicas. Posteriormente, una vez inventado el refrigerador, comenzó un largo proyecto de investigación para medir los calores específicos de diferentes sustancias a bajas temperaturas. Su interés inicial fue hacer más precisas las ideas en boga entre los químicos sobre las condiciones de equilibrio en muchas reacciones químicas, que no habían tomado en cuenta los efectos de la temperatura. Así es como encontró que, de manera sistemática, al disminuir la temperatura y acercarse al cero absoluto, el calor específico de las sustancias disminuye continuamente. Claramente, al llegar a estas temperaturas las sustancias están en la fase sólida. No existe ninguna sustancia que a estas temperaturas sea gas o líquido.1 De estos resultados Nernst formuló en 1906 la tercera ley de la termodinámica, que se refiere a las propiedades termodinámicas de las sustancias en la cercanía del cero absoluto de temperatura. Una consecuencia de la tercera ley es que el calor específico de todas las sustancias se anula al llegar su temperatura a ser cero grados absolutos, es decir a -273ºC.

El trabajo de Nernst tuvo gran importancia teórica en el desarrollo de la termodinámica. Además, también tuvo importantes aplicaciones prácticas. Por ejemplo, fue muy útil en la formulación de los diversos cálculos que se necesitaron para hacer la síntesis del amoniaco.

Nernst obtuvo el premio Nobel de Química en 1920 por sus trabajos en termoquímica y es justamente considerado como uno de los fundadores de la fisicoquímica moderna.

El trabajo que desembocó en la formulación de la tercera ley de la termodinámica fue puramente macroscópico, de manera análoga a como se encontraron las otras dos leyes. En ningún momento se utilizó hipótesis alguna acerca de la estructura microscópica que pudieran tener las sustancias.

 

NOTAS

1 Una excepción es el helio que continúa siendo líquido hasta temperaturas de alrededor 2ºK, o sea de -271ºC. Sin embargo, Nernst no trabajó con helio.

  1   2   3   4


La base de datos está protegida por derechos de autor ©espanito.com 2016
enviar mensaje