Página principal

Temas páginas modelos antiguos


Descargar 133.29 Kb.
Página1/2
Fecha de conversión18.07.2016
Tamaño133.29 Kb.
  1   2

TEMAS PÁGINAS
MODELOS ANTIGUOS…………………………………………… 1
ALGUNOS MODELOS ATÓMICOS………………………………... 2, 3, 4, 5, 6,7 Y 8.

PROPIEDADES DEL ÁTOMO DE BOHR……………………........... 8 Y 9.


CUÁNTIZACIÓN DE LA ENERGÍA HIPÓTESIS DE PLANCK…… 9 Y 10.
ASPECTOS ÁTOMICOS………………………………………............ 10
EFECTOS FOTOELÉCTRICOS…………………………………….... 10 Y 11.
JOHN DALTON……………………………………………………. 12
JOSEPH JOHN THOMSON………………………………………… 13
RUTHERFORD……………………………………………………. 14, 15 y 16.
CORRECCIONES DEL MODELOS DE BÖHR……………………... 17
POSTULADOS DE BOHR…………………………………………. 18

TEORÍA CUÁNTICA DE PLANCK……………………………….... 19


PRINCIPIOS DE INDETERMINACIÓN DE HEISENBERG……..... 20 Y 21
MODELOS ÁTOMICOS DE LA MÉCANICA CUÁNTICA………….. 22, 23 Y 23.
MODELOS ÁTOMICOS Y DESARROLLO DE LA MÉCANICA

CUÁNTICA………………………………………………………… 24, 25 Y 26.


MODELOS ÁTOMICOS ACTUALES………………………………... 27, 28 y 29

EL CONTENIDO DE LOS MODELOS ÁTOMICOS, TOMA COMO PUNTO DE PARTIDA CRITERIOS DE LOS CIENTÍFICOS EN EL ESTUDIO DE LA QUIMICA, AUNQUE NO POR ELLO CONSIDERAMOS A ESTOS ÚNICOS Y DEFINITIVOS.


EL OBJETIVO PRINCIPAL DE DICHO TEXTO ES DOBLE: PRIMERO PRETENDEMOS MOTIVAR EN EL ALUMNO UN PROCESO DE APRENDIZAJE DE MANERA ACTIVA, SIN TENER QUE MEMORIZAR FECHAS O ACONTECIMIENTOS PARA REPETIRLOS EN CLASE.
CONSIDERAMOS EL CONTENIDO COMO UN PUNTO DE PARTIDA DE AQUELLAS IDEAS QUE GENREN EL COMENTARIO, EL ANÁLISIS Y LA DISCUSIÓN CON FIN DE ENRIQUECER LAS TÉMATICAS PROPUESTAS.
EN SEGUNDO LUGAR EL PRESENTE TRABAJO, BUSCA CONVERTIRSE EN UN INSTRUMENTO EFICAZ Y ÚTIL QUE NOS AYUDE DURANTE NUESTRA LABOR EDUCATIVA.
PARA LOGRAR ESTÉ PROPÓSITO HEMOS INTENTADO PRESENTAR LAS LÍNEAS MÁS DESTACADAS PARA EXPLICAR EL POR QUÉ DE LOS MODELOS ÁTOMICOS.
ASÍ MISMO, LOS MODELOS ÁTOMICOS, SE ESTRUCTUTA BAJO UN PROGRAMA OFICIAL, QUE PRETENDE CONVERTIRSE EN UN REAL APOYO DIDÁCTICO. LOS MODELOS ÁTOMICOS NO SON SIMPLES COMENTARIOS O TEORÍAS; ES SOBRE TODO, UN ANÁLISIS DEL CÓMO Y EL POR QUÉ DE ESTOS ELEMENTOS QUE HAN OCURRIDO DE TAL O CUÁL MANERA. EN POCAS PALABRAS, BUSCAMOS EXPLICAR LAS TEORÍAS DE LOS CIÉNTIFICOS DE LOS MODELOS ÁTOMICOS COMO UN TODO.


Modelos Atómicos Antiguos


Los modelos atómicos de la antigüedad fueron establecidos a través de bases puramente especulativas, sin base experimental.
Pueden distinguirse dos grandes épocas:

  • La época clásica griega: destacan las ideas de Aristóteles, Thales, Demócrito, Leucipo, etc. Estas teorías son consideradas las bases del atomismo.

  • La Edad Media: los alquimistas elucubraron intensamente sobre la estructura íntima de la materia, pero no dejaron muchos documentos con sus ideas. Al ser un saber prohibido, debían esconderse para evitar problemas con la Inquisición.




ALGUNOS MODELOS ATÓMICOS


INTRODUCCIÓN.

Cada sustancia del universo, las piedras, el mar, nosotros mismos, los planetas y hasta las estrellas más lejanas, están enteramente formada por pequeñas partículas llamadas átomos.

Son tan pequeñas que no son posibles fotografiarlas. Para hacernos una idea de su tamaño, un punto de esta línea puede contener dos mil millones de átomos.

Estas pequeñas partículas son estudiadas por la química, ciencia que surgió en la edad media y que estudia la materia.

Pero si nos adentramos en la materia nos damos cuenta de que está formada por átomos. Para comprender estos átomos a lo largo de la historia diferentes científicos han enunciado una serie de teorías que nos ayudan a comprender la complejidad de estas partículas. Estas teorías significan el asentamiento de la química moderna.

Como ya hemos dicho antes la química surgió en la edad media, lo que quiere decir que ya se conocía el átomo pero no del todo, así durante el renacimiento esta ciencia evoluciona.

Posteriormente a fines del siglo XVIII se descubren un gran número de elementos, pero este no es el avance más notable ya que este reside cuando Lavoisier da una interpretación correcta al fenómeno de la combustión.

Ya en el siglo XIX se establecen diferentes leyes de la combinación y con la clasificación periódica de los elementos (1871) se potencia el estudio de la constitución de los átomos.

Actualmente su objetivo es cooperar a la interpretación de la composición, propiedades, estructura y transformaciones del universo, pero para hacer todo esto hemos de empezar de lo más simple y eso son los átomos, que hoy conocemos gracias a esas teorías enunciadas a lo largo de la historia. Estas teorías que tanto significan para la química es lo que vamos a estudiar en las próximas hojas de este trabajo.


  1. Modelo atómico de John Dalton, publicada entre los años  1.808 y 1.810

John Dalton (1766-1844). Químico y físico británico. Creó una importante teoría atómica de la materia. En 1803 formuló la ley que lleva su nombre y que resume las leyes cuantitativas de la química (ley de la conservación de la masa, realizada por Lavoisier; ley de las proporciones definidas, realizada por Louis Proust; ley de las proporciones múltiples, realizada por él mismo). Su teoría se puede resumir en:

1.- Los elementos químicos están formados por partículas muy pequeñas e indivisibles llamadas átomos.

2.- Todos los átomos de un elemento químico dado son idénticos en su masa y demás propiedades.

3.- Los átomos de diferentes elementos químicos son distintos, en particular sus masas son diferentes.

4.- Los átomos son indestructibles y retienen su identidad en los cambios químicos.

5.- Los compuestos se forman cuando átomos de diferentes elementos se combinan entre sí, en una relación de números enteros sencilla, formando entidades definidas (hoy llamadas moléculas).



Para Dalton los átomos eran esferas macizas. representación de distintos átomos según Dalton:

 Oxígeno

 Hidrógeno

 Azufre

 Cobre

 Carbono

Representación de un cambio químico, según Dalton:

+

Esto quería decir que un átomo de oxígeno más un átomo de hidrógeno daba un átomo o molécula de agua.



La formación de agua a partir de oxígeno e hidrógeno supone la combinación de átomos de estos elementos para formar "moléculas" de agua. Dalton, equivocadamente, supuso que la molécula de agua contenía un átomo de oxígeno y otro de hidrógeno.

Dalton, además de esta teoría creó la ley de las proporciones múltiples. Cuando los elementos se combinan en más de una proporción, y aunque los resultados de estas combinaciones son compuestos diferentes, existe una relación entre esas proporciones.

Cuando dos elementos se combinan para formar más de un compuesto, las cantidades de uno de ellos que se combina con una cantidad fija del otro están relacionadas entre sí por números enteros sencillos.

A mediados del siglo XIX, unos años después de que Dalton enunciara se teoría, se desencadenó una serie de acontecimientos que fueron introduciendo modificaciones al modelo atómico inicial.

De hecho, el mundo atómico es tan infinitamente pequeño para nosotros que resulta muy difícil su conocimiento. Nos hallamos frente a él como si estuviésemos delante de una caja cerrada que no se pudiese abrir. Para conocer su contenido solamente podríamos proceder a manipular la caja (moverla en distintas direcciones, escuchar el ruido, pesarla...) y formular un modelo de acuerdo con nuestra experiencia. Este modelo sería válido hasta que nuevas experiencias nos indujeran a cambiarlo por otro. De la misma manera se ha ido construyendo el modelo atómico actual; de Dalton hasta nuestros días se han ido sucediendo diferentes experiencias que han llevado a la formulación de una serie de modelos invalidados sucesivamente a la luz de nuevos acontecimientos.


  1. Modelo atómico de J. J. Thomson , publicada entre los años  1.898 y 1.904

Joseph Thomson (1.856-1.940) partiendo de las informaciones que se tenían hasta ese momento presentó algunas hipótesis en 1898 y 1.904, intentando justificar dos hechos:

La materia es eléctricamente neutra, lo que hace pensar que, además de electrones, debe de haber partículas con cargas positivas.

Los electrones pueden extraerse de los átomos, pero no así las cargas positivas.

Propuso entonces un modelo para el átomo en el que la mayoría de la masa aparecía asociada con la carga positiva (dada la poca masa del electrón en comparación con la de los átomos) y suponiendo que había un cierto número de electrones distribuidos uniformemente dentro de esa masa de carga positiva (como una especie de pastel o calabaza en la que los electrones estuviesen incrustados como si fueran trocitos de fruta o pepitas).

Fue un primer modelo realmente atómico, referido a la constitución de los átomos, pero muy limitado y pronto fue sustituido por otros.

Thomson, sir Joseph john (1856-1940). Físico británico. Según el modelo de Thomson el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones de un modo parecido a como lo están las semillas en una sandía. Este sencillo modelo explicaba el hecho de que la materia fuese eléctricamente neutra, pues en los átomos de Thomson la carga positiva era neutralizada por la negativa. Además los electrones podrían ser arrancados de la esfera si la energía en juego era suficientemente importante como sucedía en los tubos de descarga.

J. J. Thomson demostró en 1897 que estos rayos se desviaban también en un campo eléctrico y eran atraídos por el polo positivo, lo que probaba que eran cargas eléctricas negativas. Calculó también la relación entre la carga y la masa de estas partículas.

Para este cálculo realizó un experimento: hizo pasar un haz de rayos catódicos por un campo eléctrico y uno magnético.

Cada uno de estos campos, actuando aisladamente, desviaba el haz de rayos en sentidos opuestos. Si se dejaba fijo el campo eléctrico, el campo magnético podía variarse hasta conseguir que el haz de rayos siguiera la trayectoria horizontal original; en este momento las fuerzas eléctricas y magnética eran iguales y, por ser de sentido contrario se anulaban.

El segundo paso consistía en eliminar el campo magnético y medir la desviación sufrida por el haz debido al campo eléctrico. Resulta que los rayos catódicos tienen una relación carga a masa más de 1.000 veces superior a la de cualquier Ion.

Esta constatación llevó a Thomson a suponer que las partículas que forman los rayos catódicos no eran átomos cargados sino fragmentos de átomos, es decir, partículas subatómicas a las que llamó electrones.

  Las placas se colocan dentro de un tubo de vidrio cerrado, al que se le extrae el aire, y se introduce un gas a presión reducida.



  1. Modelo atómico de Rutherford, publicada en el 1.9111

Ernest Rutherford (1.871-1.937) identifico en 1.898 dos tipos de las radiaciones emitidas por el urania a las que llamo a las que llamó alfa (a)  y beta (b) .  Poco después Paul Villard identifico un tercer tipo de radiaciones a las que llamo gamma(n).
Rutherford discípulo de Thomson y sucesos de su cátedra, junto con sus discípulos Hans Geiger (1.882-1.945) y Gregor Marsden (1.890-1956), centraron sus investigaciones en las características de las radiactividad, diseñando su famosa experiencia de bombardear láminas delgadas de distintas sustancias, utilizando como proyectiles las partículas alfa (a) .

Sir Ernest Rutherford (1871-1937), famoso hombre de ciencia inglés que obtuvo el premio Nóbel de química en 1919, realizó en 1911 una experiencia que supuso en paso adelante muy importante en el conocimiento del átomo.

La experiencia de Rutherford consistió en bombardear con partículas alfa una finísima lámina de oro. Las partículas alfa atravesaban la lámina de oro y eran recogidas sobre una pantalla de sulfuro de cinc.

La importancia del experimento estuvo en que mientras la mayoría de partículas atravesaban la lámina sin desviarse o siendo desviadas solamente en pequeños ángulos, unas cuantas partículas eran dispersadas a ángulos grandes hasta 180º.

El hecho de que sólo unas pocas radiaciones sufriesen desviaciones hizo suponer que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño en comparación a todo el tamaño atómico; esta parte del átomo con electricidad positiva fue llamado núcleo.

Rutherford poseía información sobre el tamaño, masa y carga del núcleo, pero no tenía información alguna acerca de la distribución o posición de los electrones.

En el modelo de Rutherford, los electrones se movían alrededor del núcleo como los planetas alrededor del sol. Los electrones no caían en el núcleo, ya que la fuerza de atracción electrostática era contrarrestada por la tendencia del electrón a continuar moviéndose en línea recta. Este modelo fue satisfactorio hasta que se observó que estaba en contradicción con una información ya conocida en aquel momento: de acuerdo con las leyes del electromagnetismo, un electrón o todo objeto eléctricamente cargado que es acelerado o cuya dirección lineal es modificada, emite o absorbe radiación electromagnética.

El electrón del átomo de Rurherford modificaba su dirección lineal continuamente, ya que seguía una trayectoria circular. Por lo tanto, debería emitir radiación electromagnética y esta radiación causaría la disminución de la energía del electrón, que en consecuencia debería describir una trayectoria en espiral hasta caer en el núcleo. El modelo de Rutherford fue sustituido por el de Bohr unos años más tarde.

Con las informaciones que disponía y de las obtenidas de su experiencia, Lord Rutherford propuso en el 1.911 este modelo de átomo:

1. El átomo esta constituido por una zona central, a la que se le llama núcleo, en la que se encuentra concentrada toda la carga positiva y casi toda la masa del núcleo.

2. Hay otra zona exterior del átomo, la corteza, en la que se encuentra toda la carga negativa y cuya masa es muy pequeña en comparación con la del átomo. La corteza esta formada por los electrones que tenga el átomo.

3.-Los electrones se están moviendo a gran velocidad en torno al núcleo.

4. El tamaño del núcleo es muy pequeño en comparación con el del átomo (unas 100.000 veces menor)


  1. Modelo atómico de Bohr para el átomo de hidrógeno, propuesto en 1.913

A pesar de constituir un gran avance y de predecir hechos reales, el modelo nuclear de Rutherford presentaba dos graves inconvenientes:

0. Contradecía las leyes electromagnéticas de Maxwell, según las cuales, una partícula cargada, cuando posee aceleración, emite energía electromagnética.

Según el enunciado anterior los espectros atómicos debería ser continuos, ocurriendo que éstos son discontinuos, formados por líneas de una frecuencia determinada.

El físico danés Meils Bohn (1.885-1.962), premio Nóbel de Física en 1.922 presento en 1.913 el primer modelo de un átomo basado en la cuantización de la energía. Supero las dificultades del modelo de Rutherford suponiendo simplemente que la Física clásica no se podía aplicar al universo atómico. No hay ninguna razón, decidió Bohr, para esperar que los electrones en los átomos radien energía mientras no se les proporcione ninguna energía adicional. Igualmente los espectros atómicos de absorción y emisión de líneas eran indicativos de que los átomos, y más concretamente los electrones, eran capaces de absorber o emitir cuantos de energía en determinadas condiciones

La teoría de los cuantos de Planck la aporto a Bohr dos ideas:

Las oscilaciones eléctricas del átomo solo pueden poseer cantidades discretas de energía (están cuantizados)

Sólo se emite radiacción cuando el oscilador pasa de un estado cuantizado a otro de mayor energía.

Bohr aplicó estas ideas al átomo de hidrógeno y enuncio los tres postulados siguientes:

a. En el átomo de hidrógeno el movimiento del electrón alrededor del núcleo está restringido a un número discreto de orbitas circulares (primer postulado) .

a. El momento angular del electrón en una órbita está cuantizado; es un número entero de h/2pi, siendo h la constante de Planck (segundo postulado).

a. El electrón no radia energía mientras permanece en una de las órbitas permitidas, teniendo en cada órbita una energía característica constante. Cuando el electrón cae de un estado de energía superior a otro de energía inferior, se emite una cantidad de energía definida en forma de un fotón de radiación (tercer postulado).

Niels Bohr (1885-1962 fue un físico danés que aplicó por primera vez la hipótesis cuántica a la estructura atómica, a la vez que buscó una explicación a los espectros discontinuos de la luz emitida por los elementos gaseosos. Todo ello llevó a formular un nuevo modelo de la estructura electrónica de los átomos que superaba las dificultades del átomo de Rutherford.



Este modelo implicaba los siguientes postulados:

1.- El electrón tenía ciertos estados definidos estacionarios de movimiento (niveles de energía) que le eran permitidos; cada uno de estos estados estacionarios tenía una energía fija y definida.

2.- Cuando un electrón estaba en uno de estos estados no irradiaba pero cuando cambiaba de estado absorbía o desprendía energía.

3.- En cualquiera de estos estados, el electrón se movía siguiendo una órbita circular alrededor del núcleo.

4.- Los estados de movimiento electrónico permitidos eran aquellos en los cuales el momento angular del electrón (m · v · r ) era un múltiplo entero de h/2 · 3.14.

Vemos pues que Bohr aplicaba la hipótesis cuántica por Planck en 1900.

La teoría ondulatoria electromagnética de la luz era satisfactoria en cuanto explicaba algunos fenómenos ópticos tales como la difracción o la dispersión, pero no explicaba otros fenómenos tales como la irradicación de un cuerpo sólido caliente. Planck resolvió el problema suponiendo que un sistema mecánico no podía tener cualquier valor de la energía, sino solamente ciertos valores.

Así, en un cuerpo sólido caliente que irradia energía, Planck consideró que una onda electromagnética de frecuencia era emitida por un grupo de átomos que circulaba con la misma frecuencia.

Aplicando esta hipótesis a la estructura electrónica de los átomos se resolvía la dificultad que presentaba el átomo de Rutherford. El electrón, al girar alrededor del núcleo, no iba perdiendo la energía, sino que se situaba en unos estados estacionarios de movimiento que tenían una energía fija. Un electrón sólo perdía o ganaba energía cuando saltaba de un estado (nivel) a otro.

Por otro lado, el modelo de Bohr suponía una explicación de los espectros discontinuos de los gases, en particular del más sencillo de todos, el hidrógeno. Una raya de un espectro correspondía a una radiación de una determinada frecuencia.

¿Por qué un elemento emite solamente cierta frecuencia ? Veamos la respuesta:

En condiciones normales los electrones de un átomo o ion se sitúan en los niveles de más baja energía. Cuando un átomo recibe suficiente energía, es posible que un electrón salte a un nivel superior a aquel en que se halla. Este proceso se llama excitación.

Un electrón excitado se halla en un estado inestable y desciende a un nivel inferior, emitiendo una radiación cuya energía será igual a la diferencia de la que tienen los dos niveles.

La energía del electrón en el átomo es negativa porque es menor que la energía del electrón libre.

Al aplicar la formula de Bohr a otros átomos se obtuvieron resultados satisfactorios, al coincidir el pronóstico con el resultado experimental de los espectros de estos átomos.

El modelo de Thomson presentaba un átomo estático y macizo. Las cargas positivas y negativas estaban en reposo neutralizándose mutuamente. Los electrones estaban incrustados en una masa positiva como las pasas en un pastel de frutas. El átomo de Rutherford era dinámico y hueco, pero de acuerdo con las leyes de la física clásica inestable. El modelo de Bohr era análogo al de Rutherford, pero conseguía salvar la inestabilidad recurriendo a la noción de cuantificación y junto con ella a la idea de que la física de los átomos debía ser diferente de la física clásica.



PROPIEDADES DEL ÁTOMO DE BOHR.

Atendiendo a las características estructurales del átomo las propiedades de este varían. Así por ejemplo los átomos de que tienen el mismo número de electrones de valencia que poseen distintos números atómicos poseen características similares.

Los átomos están formados por un núcleo que posee una serie de partículas subatómicas. Alrededor del núcleo se hallan en diferentes órbitas los electrones.

Las partículas subatómicas de las que se compone el núcleo son los protones y los neutrones. Los átomos son eléctricamente neutros. Luego, si contienen electrones, cargados negativamente, deben contener también otras partículas con carga positiva que corresponden a la carga de aquellos. Estas partículas estables con signo positivo se las llamó protón. Su masa es igual a 1,6710-27 kg.

Con estas dos partículas, se intentó construir todos los átomos conocidos, pero no pudo ser así porque faltaban unas de las partículas elementales del núcleo que fue descubierto por J. Chadwick en 1932 y que se llamó neutrón. Esta partícula era de carga nula y su masa es ligerísimamente superior a la del protón (1,6748210-27kg.).

Situados en órbitas alrededor del núcleo se hallan los electrones, partículas estables de carga eléctrica negativa y con una masa igual a 9,1110-31kg. El modelo de Bohr explica el espectro del átomo de hidrógeno, pero no los de átomos mayores.

Sin negar el considerable avance que supuso la teoría atómica de Bohr, ésta solo podía aplicarse a átomos muy sencillos, y aunque dedujo el valor de algunas constantes, que prácticamente coincidían con los valores experimentales sencillos.

El modelo no fue capaz de explicar los numerosos saltos electrónicos, responsables de las líneas que aparecen en los espectros de los átomos que poseen más de un electrón.

Al modelo de Bohr se le fueron introduciendo mejoras, pero la idea de un átomo compuesto por orbitas alrededor de un núcleo central  puede considerarse demasiado sencilla, no fue posible interpretar satisfactoriamente el espectro de otros átomos con más de un electrón (átomos polielectrónicos) ni mucho menos la capacidad de los átomos para formar enlaces químicos.

0. La tercera partícula fundamental: el neutrón descubierta por James Chadwick en 1.932

El descubrimiento de esta tercera partícula fundamental no fue descubierta hasta el 1.932 por el físico inglés James Chadwick, la dificultad de su descubrimiento debía a que ésta partícula carecía de carga eléctrica. Su descubrimiento resolvió el problemas de la radiación alfa y una mejora del modelo atómico de Rutherford, que quedó completado en los siguientes términos:

1. Los átomos constan de núcleos muy pequeños y sumamente densos, rodeados de una nube de electrones a distancias relativamente grandes de los núcleos.

2. Todos los núcleos contienen protones.

3. Los núcleos de todos los átomos, con excepción de la forma más común de hidrógeno, también contienen neutrones.



CUANTIZACIÓN DE LA ENERGÍA. HIPÓTESIS DE PLANCK, PUBLICADA EN 1.900.

Para explicar la radiación del cuerpo negro el físico alemán Max Planck (1.858-1.947), en 1900 propuso que cada una de las partículas que constituyen la materia se comportan como osciladores armónicos de frecuencia de oscilación dada; pero se aparta de las leyes de la Física clásica.

Planck establece que la energía que emite o absorbe un átomo está formada por pequeños paquetes o cuantos de energía. La energía de cada uno de los cuantos que emite o absorbe el átomo viene dada por la expresión

E = h . f

Ya que la energía del átomo que se comporta como un oscilador puede aumentar o disminuir sólo en cantidades enteras h.v, diremos que la energía de la radiación es discontinua y esta cuantizada en la forma

E = n.h.f

Estos cuantos o fotones de energía radiante son tan pequeños que la luz que nos parece continua de manera análoga a lo que ocurre con la materia, pero realmente ambas son discontinuas.


      1. ESPECTROS ATÓMICOS.

Se comprueba experimentalmente que los átomos son capaces de emitir radiación electromagnética o absorberla al ser estimulados mediante calentamiento o radiación, respectivamente, pero solo en algunas frecuencias. Estas frecuencias de emisión o absorción determinan una serie de líneas que recogidas en un diagrama reciben el nombre de espectro de emisión o de absorción del átomo correspondiente. Se trata en todos los casos de espectros discontinuos.

Es preciso señalar que cada elemento químico excitado emite siempre unas rayas de frecuencia característica que, por tanto,  sirven para identificarlo. Esta propiedad se manifiesta de la misma manera ya sea con ele elemento puro o combinado con otros, por lo que se trata de una técnica de análisis básica en la identificación atómica.



EFECTO FOTOELÉCTRICO, EXPLICADO EN EL 1.905

La Teoría de Planck no fue en absoluto bien acogida hasta que, en 1.905, Albert Einstein la aplicó a la resolución de un fenómeno inexplicable hasta entonces: El efecto fotoeléctrico. Se conoce con este nombre a emisión de electrones (fotoelectrones) por las superficies metálicas cuando se iluminan con luz de frecuencia adecuada.

En los metales alcalinos el efecto se presenta ya con luz visible, en los demás metales con luz ultravioleta.

El estudio cuantitativo del efecto fotoeléctrico ha conducido a las siguientes conclusiones:

1. Para cada metal existe una frecuencia mínima (frecuencia umbral) por debajo de la cual no se produce el efecto fotoeléctrico, independientemente de la intensidad de la radiación luminosa.

2. Si la frecuencia de la luz incidente es mayor que la frecuencia umbral, la intensidad de la corriente fotoeléctrica es proporcional a la intensidad de la radiación.

3. La emisión de electrones es prácticamente instantánea, a partir de la incidencia de la luz

4. La energía cinética de los electrones emitidos aumenta al hacerlo la frecuencia de la luz.

La teoría ondulatoria de la luz es incompatible con las observaciones experimentales relativas al efecto fotoeléctrico. En 1.905, Einstein explico el efecto fotoeléctrico aplicando a la luz las teorías de Planck sobre la radiación térmica: La luz se propaga por el espacio transportando la energía en cuantos de luz, llamados fotones, cuya energía viene dada por la ecuación de Planck:

E = h.f


En la explicación dada por Einstein, toda la energía de un fotón se transmite a un electrón de un metal, y cuando éste salta de la superficie metálica posee una energía cinética dada por:

h.f = Ec + We

We es la energía mínima que el electrón necesita para escapar de la superficie del metal. Se suele denominar trabajo de extracción


Energía del fotón = Energía cinética del electrón + Trabajo de extracción

 

CIENTÍFICOS

JONH DALTON

Introduce la idea de la discontinuidad de la materia, es decir, esta es la primera teoría científica que considera que la materia está dividida en átomos (dejando aparte a precursores de la Antigüedad como Demócrito y Leucipo, cuyas afirmaciones no se apoyaban en ningún experimento riguroso).

Los postulados básicos de esta teoría atómica son:

1. La materia está dividida en unas partículas indivisibles e inalterables, que se denominan átomos.

Actualmente, se sabe que los átomos sí pueden dividirse y alterarse.

2. Todos los átomos de un mismo elemento son idénticos entre sí (presentan igual masa e iguales propiedades).

Actualmente, es necesario introducir el concepto de isótopos: átomos de un mismo elemento, que tienen distinta masa, y esa es justamente la característica que los diferencia entre sí.

3. Los átomos de distintos elementos tienen distinta masa y distintas propiedades.

4. Los compuestos se forman cuando los átomos se unen entre sí, en una relación constante y sencilla.

Al suponer que la relación numérica entre los átomos era la más sencilla posible, Dalton asignó al agua la formula HO, al amoníaco la formula NH, etc.




JOSEPH JOHN THOMSON


Introduce la idea de que el átomo puede dividirse en las llamadas partículas fundamentales:



  • Electrones, con carga eléctrica negativa





  • Neutrones, sin carga eléctrica y con una masa mucho mayor que la de electrones y protones.

Thomson considera al átomo como una gran esfera con carga eléctrica positiva, en la cual se distribuyen los electrones como pequeños granitos (de forma similar a las pepitas de una sandía).

RUTHERFORD.

En 1913 el físico británico nacido en Nueva Zelanda Ernest Rutherford comprobó que el anterior modelo atómico de Thomson, con partículas positivas y negativas uniformemente distribuidas, era insostenible. Las partículas alfa empleadas por Rutherford, muy rápidas y con carga positiva, se desviaban con claridad al atravesar una capa muy fina de materia. Para explicar este efecto era necesario un modelo atómico con un núcleo central pesado y cargado positivamente que provocara la dispersión de las partículas alfa. Rutherford sugirió que la carga positiva del átomo estaba concentrada en un núcleo estacionario de gran masa, mientras que los electrones negativos se movían en órbitas alrededor del núcleo, ligadas por la atracción eléctrica entre cargas opuestas. Sin embargo, este modelo de “sistema solar” no podía ser estable según la teoría de Maxwell ya que, al girar, los electrones son acelerados y deberían emitir radiación electromagnética, perder energía y como consecuencia caer en el núcleo en un tiempo muy breve.


Esto exigió otra ruptura radical con la física clásica, que corrió a cargo del físico danés Niels Bohr. Según Bohr, en los átomos existían ciertas órbitas en las que los electrones giran sin emitir radiación electromagnética. Estas órbitas permitidas, los llamados estados estacionarios, están determinadas por la condición de que el momento angular J del electrón de la órbita tiene que ser un múltiplo entero positivo de la constante de Planck dividida entre 2, es decir, = nh/2, donde el número cuántico n puede tomar cualquier valor entero positivo. Estas fórmulas extendieron la “cuantización” a la dinámica, fijaron las órbitas posibles y permitieron a Bohr calcular los radios de las mismas y los niveles de energía correspondientes.

En 1913, el año en que apareció el primer trabajo de Bohr sobre este tema, el modelo fue confirmado experimentalmente por el físico estadounidense nacido en Alemania James Franck y su colega alemán Gustav Hertz.

Bohr desarrolló su modelo con mucha mayor profundidad. Explicó el mecanismo por el que los átomos emiten luz y otras ondas electromagnéticas y propuso la hipótesis de que un electrón “elevado” por una perturbación suficiente desde la órbita de menor radio y menor energía (el estado fundamental) hasta otra órbita vuelve a “caer” al estado fundamental al poco tiempo. Esta caída está acompañada de la emisión de un único fotón con energía E = h, que corresponde a la diferencia de energía entre las órbitas superior e inferior. Cada transición entre órbitas emite un fotón característico cuya longitud de onda y frecuencia están exactamente definidas; por ejemplo, en una transición directa desde la órbita de = 3 hasta la de = 1 se emite un solo fotón, muy distinto de los dos fotones emitidos en una transición secuencial desde la órbita de = 3 hasta la de = 2 y a continuación desde ésta hasta la de = 1. Este modelo permitió a Bohr explicar con gran precisión el espectro atómico más sencillo, el del hidrógeno, que había desafiado a la física clásica.

Aunque el modelo de Bohr se amplió y perfeccionó, no podía explicar los fenómenos observados en átomos con más de un electrón. Ni siquiera podía explicar la intensidad de las rayas espectrales del sencillo átomo de hidrógeno. Como su capacidad de predicción de resultados experimentales era limitada, no resultaba plenamente satisfactorio para los físicos teóricos.1
En 1911, Rutherford introduce el modelo planetario, que es el más utilizado aún hoy en día. Considera que el átomo se divide en:

un núcleo central, que contiene los protones y neutrones (y por tanto allí se concentra toda la carga positiva y casi toda la masa del átomo)

una corteza, formada por los electrones, que giran alrededor del núcleo en órbitas circulares, de forma similar a como los planetas giran alrededor del Sol.

Los experimentos de Rutherford demostraron que el núcleo es muy pequeño comparado con el tamaño de todo el átomo: el átomo está prácticamente hueco.

Experimento de Rutherford.
Consistió en bombardear una lámina muy fina de oro (10-3 cm de espesor) con un haz de partículas. a.
     (Las partículas a son iones He2+; son uno de los tipos de partículas que se producen cuando se descompone una sustancia radiactiva.)

Según el modelo de Thomson, lo que cabía esperar es que el haz de partículas atravesase la lámina, separándose algo más unas partículas de otras. Sin embargo, Rutherford obtuvo unos resultados sorprendentes: algunas partículas sufrían desviaciones considerables y una mínima parte incluso rebotaba en la lámina y volvía hacia atrás.


El mismo Rutherford describe su asombro ante tal resultado con estas palabras: "...Esto era lo más increíble que me había ocurrido en mi vida. Tan increíble como si un proyectil de 15 pulgadas, disparado contra una hoja de papel de seda, se volviera y le golpeara a uno..."

Las grandes desviaciones de algunas partículas a sólo se podían explicar por choque contra una partícula de gran masa y elevada carga positiva. Esto hizo suponer a Rutherford que toda la carga positiva del átomo estaba concentrada en un pequeño gránulo donde residía además la casi totalidad de su masa. Los datos experimentales indicaban que el radio del núcleo era más de diez mil veces menor que el del átomo.

Como el peso atómico de los elementos tenía un valor mucho mayor que el calculado a base de los protones del núcleo, Rutherford sugirió que en los núcleos de los átomos tenían que existir otras partículas de masa casi igual a la del protón, pero sin carga eléctrica, por lo que las llamó neutrones. El neutrón fue descubierto experimentalmente en 1932 por Chadwick, quien, al bombardear el berilio con partículas a, observó que se producían unas partículas que identificó con los neutrones predichos por Rutherford.

Correcciones al modelo de Böhr: números cuánticos

Fallos del modelo de Böhr.

Espectros atómicos.
Se llama espectro atómico de un elemento químico al resultado de descomponer una radiación electromagnética compleja en todas las radiaciones sencillas que la componen, caracterizadas cada una por un valor de longitud de onda, . El espectro consiste en un conjunto de líneas paralelas, que corresponden cada una a una longitud de onda.
Podemos analizar la radiación que absorbe un elemento (espectro de absorción) o la radiación que emite (espectro de emisión). Cada elemento tiene un espectro característico; por tanto, un modelo atómico debería ser capaz de justificar el espectro de cada elemento.

Fórmula de Rydberg.
Permite calcular la longitud de onda de cualquiera de las líneas que forman el espectro del hidrógeno:

1/ = R (1/n12 - 1/n22)

: longitud de onda de cada línea del espectro (1/: número de ondas)
n1, n2: números enteros positivos (n1< n2)
R: constante de Rydberg = 109677, 7 cm-1

Esta misma fórmula puede utilizarse para calcular la frecuencia de cada línea espectral; en ese caso, 1/ se reemplaza por la frecuencia , y la constante R vale 3,29 · 1015 s-1 (s: segundos).

En función del valor de n1, podemos distinguir diferentes series en el espectro del hidrógeno:

n1 = 1: serie de Lyman


n1 = 2: serie de Balmer
n1 = 3: serie de Paschen
n1 = 4: serie de Brackett
n1 = 5: serie de Pfund
n1 = 6: serie de Humphreys

La serie de Lyman corresponde a radiación ultravioleta.



POSTULADOS DE BÖHR.

El modelo atómico de Rutherford llevaba a unas conclusiones que se contradecían claramente con los datos experimentales. Para evitar esto, Böhr planteó unos postulados que no estaban demostrados en principio, pero que después llevaban a unas conclusiones que sí eran coherentes con los datos experimentales; es decir, la justificación experimental de este modelo es a posteriori.


Primer postulado

El electrón gira alrededor del núcleo en órbitas circulares sin emitir energía radiante.


La idea de que "el electrón gira alrededor del núcleo en órbitas circulares" existía ya en el modelo de Rutherford, pero Böhr supone que, por alguna razón desconocida por el momento, el electrón está incumpliendo las leyes del electromagnetismo y no emite energía radiante, pese a que se trata de una carga eléctrica en movimiento, que debería emitirla continuamente.


Segundo postulado

Sólo son posibles aquellas órbitas en las que el electrón tiene un momento angular que es múltiplo entero de h/(2 · ).


Puesto que el momento angular se define como L = mvr, tendremos:

mvr = n · h/(2 · ) —> r = a0 · n2                       

m: masa del electrón = 9.1 ·

Teoría cuántica de Planck.

Sabemos que la materia está dividida en unas partículas mínimas, los átomos, de forma que cualquier cantidad de materia será siempre un número entero de átomos. La teoría cuántica de Planck extiende esta idea a la energía: cuando una sustancia absorbe o emite energía, no puede absorberse o emitirse cualquier cantidad de energía, sino que definimos una unidad -mínima de energía, llamada cuanto (que será el equivalente en energía a lo que es el átomo para la materia); de esta forma, cualquier cantidad de energía que se emita o se absorba --deberá ser un número entero de cuantos.
Cuando la energía está en forma de radiación electromagnética (es decir, de una radiación similar a la luz), se denomina energía radiante y su unidad mínima recibe el nombre de --fotón. La energía de un fotón viene dada por la ecuación de Planck:

E = h ·

h: constante de Planck = 6.62 · 10-34 Julios · segundo
: frecuencia de la radiación (es un parámetro que sirve para diferenciar a unas radiaciones de otras).

Principio de indeterminación de Heisenberg

Modelo atómico de la Mecánica Cuántica: ecuación de Schrödinger

Números cuánticos

 

Dualidad corpúsculo-onda: hipótesis de Louis de Broglie.



Tradicionalmente, los electrones se han considerado como partículas, y por tanto un haz de electrones sería algo claramente distinto de una onda. Louis de Broglie propuso (1923) eliminar esta distinción: un haz de partículas y una onda son esencialmente el mismo fenómeno; simplemente, dependiendo del experimento que realicemos, observaremos un haz de partículas u observaremos una onda. Así, el electrón posee una longitud de onda (que es un parámetro totalmente característico de las ondas) que viene dada por:


Esta idea, que en un principio era una simple propuesta teórica, fue confirmada experimentalmente en 1927, cuando se consiguió que haces de electrones experimentasen un fenómeno muy característico de las ondas: la distorsión de la onda al atravesar una rendija muy estrecha (difracción).

 

PRINCIPIO DE INDETERMINACIÓN DE HEISENBERG.



Establece que es imposible conocer simultáneamente la posición y la velocidad del -----electrón, y por tanto es imposible determinar su trayectoria. Cuanto mayor sea la exactitud con que se conozca la posición, mayor será el error en la velocidad, y viceversa. Solamente es posible determinar la probabilidad de que el electrón se encuentre.

Podemos entender mejor este Principio si pensamos en lo que sería la medida de la posición y velocidad de un electrón: para realizar la medida (para poder "ver" de algún modo el electrón) es necesario que un fotón de luz choque con el electrón, con lo cual está modificando su posición y velocidad; es decir, por el mismo hecho de realizar la medida, el experimentador modifica los datos de algún modo, introduciendo un error que es imposible de reducir a cero, por muy perfectos que sean nuestros instrumentos.

Este Principio, enunciado en 1927, supone un cambio básico en nuestra forma de estudiar la Naturaleza, ya que se pasa de un conocimiento teóricamente exacto (o al menos, que en teoría podría llegar a ser exacto con el tiempo) a un conocimiento basado sólo en probabilidades y en la imposibilidad teórica de superar nunca un cierto nivel de error.

 

MODELO ATÓMICO DE LA MECÁNICA CUÁNTICA: ECUACIÓN DE SCHRÖDINGER.

La Mecánica Cuántica (1927) engloba la hipótesis de Louis de Broglie y el Principio de indeterminación de Heisenberg. El carácter ondulatorio del electrón se aplica definiendo una función de ondas, , y utilizando una ecuación de ondas, que matemáticamente es una ecuación diferencial de segundo grado, es decir, una ecuación en la cual intervienen derivadas segundas de la función :



Al resolver la ecuación diferencial, se obtiene que la función  depende de una serie de parámetros, que se corresponden con los números cuánticos, tal y como se han definido en el modelo de Böhr.

La ecuación sólo se cumplirá cuando esos parámetros tomen --determinados valores permitidos (los mismos valores que se han indicado antes para el modelo de Böhr).
El cuadrado de la función de ondas, 2, corresponde a la probabilidad de encontrar al --- electrón en una región determinada, con lo cual se está introduciendo en el modelo el ---Principio de Heisenberg. Por ello, en este modelo aparece el concepto de orbital: regi- ón del espacio en la que hay una máxima probabilidad de encontrar al electrón.
(No debe confundirse el concepto de orbital con el de órbita, que corresponde al modelo de Böhr: una órbita es una trayectoria perfectamente definida que sigue el electrón, y por tanto es un concepto muy alejado de la mecánica probabilística.)

Números cuánticos.
En este modelo atómico, se utilizan los mismos números cuánticos que en el modelo de- Böhr y con los mismos valores permitidos, pero cambia su significado físico, puesto que ahora hay que utilizar el concepto de orbital:

 


Números cuánticos

Significado físico

Valores permitidos

principal (n)

  • Energía total del electrón (nivel energético en que se encuentra el electrón)

  • Distancia del electrón al núcleo.

1, 2, 3....

secundario o azimutal (l)

  • Subnivel energético en donde está el electrón, dentro del nivel determinado por n.

  • Forma del orbital:   

    • l = 0: orbital s (esférico)

    • l = 1: orbital p (bilobulado)
      (un orbital p en la dirección de cada eje coordenado: px, py, pz)

    • l = 2: orbital d

0, 1, 2, ..., n-1

magnético (m)

Orientación del orbital cuando se aplica un campo magnético externo.

-l, ..., 0, ..., + l

espín (s)

Sentido de giro del electrón en torno a su propio eje.

± ½

 

Así, cada conjunto de cuatro números cuánticos caracteriza a un electrón:



  • n determina el nivel energético

  • l determina el subnivel energético

  • m determina el orbital concreto dentro de ese subnivel

  • s determina el electrón concreto dentro de los que pueden alojarse en cada orbital (puede haber dos electrones en cada orbital).

Esto se refleja en el Principio de exclusión de Pauli (1925): en un átomo no puede haber dos electrones que tengan los cuatro números cuánticos iguales, al menos se tendrán que diferenciar en uno de ellos.

Los modelos atómicos y el desarrollo de la mecánica cuántica
 
Las investigaciones sobre la interacción entre la luz y la materia y sobre los espectros atómicos, el descubrimiento de la radiactividad, los estudios sobre la relación entre la electricidad y la materia y las conclusiones obtenidas del análisis de los llamados Cathodenstrahlen (rayos catódicos) producidos en los tubos de vacío fueron, entre otras muchas causas, el punto de partida de los modelos atómicos.
 
 

• En 1897, Joseph John Thomson (1856-1940) publicó varios artículos en los que estudiaba la desviación de los rayos catódicos provocada por un campo eléctrico creado dentro del tubo. Thomson pudo calcular el cociente entre carga y masa de las partículas que formaban los rayos catódicos y comprobó que era independiente de la composición del cátodo, del anticátodo o del gas del tubo. Se trataba –concluyó Thomson– de un componente universal de la materia. Hoy denominamos a estas partículas que constituyen los rayos catódicos "electrones". Thomson se convirtió en defensor de un modelo atómico que consideraba el átomo de hidrógeno como una esfera cargada positivamente, de unos 10-10 m, con un electrón oscilando en el centro.

• Al igual que pasó con los rayos catódicos, la naturaleza de los rayos descubiertos por Wilhem Conrad Röntgen en 1895 fue motivo de controversia en los primeros años de su descubrimiento. El carácter misterioso de sus propiedades llevó a Rönteg a denominarlos "rayos X". Los rayos X suscitaron el interés de numerosos investigadores, entre ellos el francés Antoine Henri Becquerel (1852-1908). Becquerel estudió las características de los rayos emitidos por las sales de uranio y observó, casualmente, que eran capaces de impresionar una placa fotográfica sin intervención de la luz solar. En 1897, la joven polaca Marie Sklodovska, que había contraído matrimonio dos años antes con Pierre Curie, profesor de la Ecole de Physique et de Chimie de Paris, eligió como tema de su tesis doctoral el estudio de los rayos uránicos de Becquerel. Un año después Pierre y Marie Curie anunciaron el descubrimiento de dos elementos más radiactivos que el uranio: el polonio y el radio.

• En 1895, Ernest Rutherford (1871-1937) comenzó a trabajar sobre las características de la radiación emitida por las sustancias radiactivas en el laboratorio de J. J. Thomson, un tema que también estaban estudiando el matrimonio Curie.

En el curso de su estudio comprobó la existencia de dos tipos de radiaciones diferentes que denominó  y . Años más tarde, en su laboratorio de Manchester, Hans Geiger y Ernest Marsden, colaboradores de Rutherford, lanzaron partículas  contra placas delgadas de diversos metales y, sorprendentemente, comprobaron que una pequeña fracción [una de entre 8.000] de las partículas  que llegaban a una placa metálica volvían a aparecer de nuevo en el lugar de partida. Rutherford consideró que el modelo atómico de Thomson era incapaz de explicar estas desviaciones y en abril de 1911 propuso un modelo atómico que trataba de explicar esta experiencia. El modelo, que había sido propuesto anteriormente por el investigador japonés Hantaro Nagaoka, consistía en un núcleo central (una esfera de 3x10-14 m de radio) que podía estar cargado positiva o negativamente, rodeado de una "esfera de electrificación" de unos 10-10 m de radio, con la misma carga, pero de signo opuesto, que el núcleo. Este modelo tenía un problema obvio: las cargas eléctricas girando alrededor del núcleo debían tener una aceleración producida por este movimiento circular y, por lo tanto, deberían emitir radiación y perder energía hasta caer en el núcleo. Dicho en otras palabras, el modelo era inestable desde el punto de vista de la física clásica.

• Los estudios sobre los espectros de emisión y absorción de los diferentes elementos y compuestos eran realizados de modo sistemático desde los trabajos de Bunsen y Kirchhoff que dieron lugar al primer espectroscopio en 1860, asunto que tratamos en nuestra exposición en el apartado dedicado al desarrollo de la espectroscopía. A finales del siglo XIX, tras numerosas propuestas anteriores, Robert Rydberg (1854-1919) pudo proponer una fórmula general para los valores las longitudes de onda de las rayas espectrales del hidrógeno:

1/ = R [(1/n1)2 – (1/n2)2]

en la que n1 y n2 eran números enteros y R la constante de Rydberg cuyo valor es de 1.097 · 107 m-1. Se trataba de una ley empírica para la cual no existió una explicación teórica aceptable hasta el desarrollo del modelo atómico de Niels Bohr (1885-1962) a principios del siglo XX.

• Un ejemplo de las ideas existentes sobre el enlace químico a principios de siglo, antes del desarrollo de la mecánica cuántica, son los modelos de Gilbert Newton Lewis (1875-1946). Estos modelos, popularizados por químicos como Irving Langmuir (1881-1957), siguen siendo utilizados para explicar algunas características de los enlaces químicos, a pesar de que han sido superadas muchas de las ideas que sirvieron a su autor para proponerlos en 1916.

• Hemos personificado en la obra de Max Plank (1858-1947) el punto de partida de la mecánica cuántica. Sus trabajos sobre la radiación emitida por el "cuerpo negro", le llevaron a postular la existencia de "paquetes de energía" de valor igual al producto de la frecuencia de la radicación por una nueva constante, la constante de Plank, que designamos con la letra "h" y cuyo valor es de 6.626 x 10-34 J.s.

• En la fotografía que recoge a los asistentes al congreso Solvay de 1927 podemos encontrar algunos de los científicos que contribuyeron a desarrollar la mecánica cuántica durante el primer tercio de este siglo: Paul Dirac (1902-1984), Erwin Schrödinger (1887-1961), Albert Einstein (1879-1955), Louis de Broglie (1892-1987), Wolfang Pauli (1900-1958), Werner Karl Heisenberg (1901-1976), Max Born (1882-1970) o Niels Bohr (1885-1962), entre otros.

• La aplicación de la mecánica cuántica a la resolución de los problemas de la química fue obra de científicos como Linus Pauling (1901-1994), autor de libros tan importantes en este sentido como su Introduction to Quantum Mechanics, with Applications to Chemistry (1935) o The Nature of the Chemical Bond and the Structure of Molecules and Crystals (1939). Entre otras muchas aportaciones, Linus Pauling fue el introductor de nuestro concepto moderno de electronegatividad.


 
 
 


  1   2


La base de datos está protegida por derechos de autor ©espanito.com 2016
enviar mensaje