Página principal

Isaac asimov


Descargar 450.37 Kb.
Página4/30
Fecha de conversión18.07.2016
Tamaño450.37 Kb.
1   2   3   4   5   6   7   8   9   ...   30

Capítulo II:
DE IMPORTANCIA PRIMORDIAL

LA SUSTANCIA DEL CROMOSOMA


La composición química de los tejidos vivos es un problema que ha preocupado a los químicos desde hace un siglo y medio, y cuyo esbozo general se trazó hacia mediados del siglo XIX.

El ingrediente principal de todo tejido vivo es, desde luego, el agua —esa misma agua que existe en todo el mundo que nos rodea—. Los restantes ingredientes, empero, son composiciones muy distintas de las sustancias comunes al mundo inanimado.

Las sustancias de tierra, mar y aire son estables, resistentes al calor y, la mayoría, ininflamables. Las sustancias aisladas de tejidos vivos, por el contrario, se destruyen fácilmente por el calor. Todas son más o menos inflamables y, aunque se calienten sin aire para que no puedan arder, también se descomponen. En este caso emiten vapores y cambian permanentemente de una u otra forma.

Por ello, ya en 1807, a las sustancias aisladas de tejidos vivos (o que lo hubieran estado) se les dio una clasificación propia y se las llamó sustancias orgánicas, ya que habían sido obtenidas de organismos. Las materias obtenidas del mundo inanimado, naturalmente, fueron clasificadas de sustancias inorgánicas.

Hacia 1820 ya era habitual dividir las sustancias orgánicas en tres amplios grupos: carbohidratos, lípidos y proteínas. Entre los carbohidratos más conocidos están el azúcar y el almidón; entre los lípidos, el aceite de oliva y la mantequilla y, entre las proteínas, la gelatina y la clara de huevo cuajada.

A mediados del siglo XIX, parecía indudable que, de las tres sustancias, las proteínas eran la de estructura más complicada y función más importante. En realidad, el mismo nombre de «proteína» se deriva de una palabra griega que significa «de importancia primordial».

La complejidad de la estructura de las proteínas se refleja en la fragilidad de la sustancia. (Aunque no siempre ocurra así, uno espera que el castillo de naipes alto y complicado se desmorone más fácilmente que el pequeño.)

Los carbohidratos y los lípidos resisten tratamientos que las proteínas no soportan, por lo menos, sin perder la facultad de actuar como tal. Por ejemplo, en una solución, la mayoría de las proteínas cambian constantemente al ser expuestas a un calor suave: la proteína se hace insoluble y no puede seguir desempeñando su función natural. Queda desnaturalizada.

Una pequeña cantidad de ácido puede desnaturalizar una proteína; puede hacerlo, por ejemplo, un toque de una solución alcalina. O, también, las fuertes soluciones salinas y la radiación. A falta de todos estos factores, la simple agitación de una solución proteínica formando espuma puede bastar para desnaturalizarla.

En realidad, las proteínas parecen ser la materia misma de la vida; tan frágiles y delicadas como un ser viviente. Todos los cambios ambientales que anulan la función de la proteína perjudican al organismo e incluso pueden destruir su vida. La vulnerabilidad de un organismo, comparada con la de una piedra, por ejemplo, no es sino una sombra de la vulnerabilidad de la proteína que lo compone.

Por lo tanto, no fue una sorpresa para los bioquímicos el descubrir que la naturaleza de los cromosomas es eminentemente proteínica. Al parecer, no podían ser otra cosa. ¿Qué otra cosa que no fuera el compuesto «de importancia primordial» podía constituir los cromosomas que son lo que determina la herencia del organismo?

Pero resulta que los cromosomas no son puramente proteína, ni toda la proteína es «puramente» proteína. Algunas lo son, ya que ninguna parte de su sustancia difiere aparentemente de otras partes. La proteína de la clara de huevo es un ejemplo de éstas; es una proteína simple.

Por otra parte, la hemoglobina, la proteína de la sangre que lleva el oxígeno de los pulmones a todo el cuerpo, no es una proteína simple; se divide en dos sustancias, heme y globin. Esta última es una proteína simple, mientras que la primera no es proteína sino una sustancia férrica que no posee ninguna de las propiedades que corrientemente se asocian con la proteína. La hemoglobina es, pues, una proteína conjugada.

«Conjugada» es un término derivado de una palabra latina que significa «unida a».

Otras proteínas conjugadas unen, a la parte de proteína simple de su composición, varios tipos de carbohidratos, lípidos, pigmentos, metales no férricos, etcétera. La proteína de los cromosomas es una proteína conjugada; pero su parte no proteínica no es ninguna de las sustancias que he mencionado, sino una sustancia bastante extraña que fue descubierta hace un siglo.

En 1869, un joven químico alemán llamado Friedrich Miescher aisló del tejido una sustancia que resultó no ser ni carbohidrato, ni lípido, ni proteína. Por haberla obtenido del núcleo de la célula, Miescher la llamó nucleína. Con el tiempo, se demostró que la sustancia poseía propiedades de ácido, por lo que pasó a ser denominada ácido nucleico.

Al fin se comprobó que esta sustancia estaba unida a la proteína de los cromosomas, por lo que a la sustancia de los cromosomas se le dio el nombre de nucleoproteína.

Pasó el tiempo. Durante el primer tercio del siglo xx, los bioquímicos se dedicaron al estudio de los virus, entidades causantes de enfermedades y tan pequeños que no podían ser vistos por el microscopio. En 1935, el bioquímico norteamericano Wendell M. Stanley aisló el virus del mosaico del tabaco (causante de una enfermedad de las hojas del tabaco) en forma de cristales2. Aquellos cristales resultaron tener naturaleza de proteínas.

El virus no estaba compuesto de células sino que era un fragmento no mayor que un cromosoma. Al igual que un cromosoma, el virus tenia la facultad de reproducirse una vez se introducía en la célula. Y, además de esta similitud funcional, poseía también una similitud química, según se descubriría pronto.

Luego resultó que el virus del mosaico del tabaco no era sólo proteína. También contenía ácido nucleico, por lo que era una nucleoproteína. Desde entonces se han aislado y analizado otros muchos virus y todos ellos sin excepción han resultado ser nucleoproteínas.

En 1940, esto ofrecía a los bioquímicos un panorama claro. (Se había descubierto que existían dos tipos de entidades que se reproducían: los cromosomas que se encontraban en el interior de la célula y los virus que la invadían desde el exterior. ¡Y las dos eran nucleoproteínas!)

La respuesta al problema de la genética, reducida a términos químicos, consistía, pues, en la naturaleza y estructura de la nucleoproteína.


1   2   3   4   5   6   7   8   9   ...   30


La base de datos está protegida por derechos de autor ©espanito.com 2016
enviar mensaje