Página principal

Concepto de máquina


Descargar 60.55 Kb.
Fecha de conversión18.07.2016
Tamaño60.55 Kb.






CONCEPTO DE MÁQUINA

Dispositivo utilizado en ingeniería para cambiar la magnitud y dirección de aplicación de una fuerza. Las cuatro máquinas simples son la palanca, la polea, el torno y el plano inclinado, que consiste en una rampa. El tornillo y la cuña se consideran a veces máquinas simples, pero en realidad son adaptaciones del plano inclinado.


Un motor es una máquina que convierte energía en movimiento o trabajo mecánico. La energía se suministra en forma de combustible químico, como gasóleo o gasolina, vapor de agua o electricidad, y el trabajo mecánico que proporciona suele ser el movimiento rotatorio de un árbol o eje. Los motores se clasifican según el tipo de energía que utilizan, como motores de aire comprimido o de gasolina; según el tipo de movimiento de sus piezas principales, como alternativos o rotatorios; según dónde tiene lugar la transformación de energía química a calor se llaman de combustión interna o externa; según el método utilizado para enfriar el motor se clasifican en refrigerados por agua o por aire; según la posición de sus cilindros, alineados o en V; según las fases por las que pasa el pistón para completar un ciclo, como de dos tiempos o de cuatro, y según el tipo de ciclo, como tipo Otto (el de los motores de gasolina) o diesel. Ciertos motores transforman energía eléctrica en energía mecánica. Otros motores especializados son el molino, la turbina de combustión, la turbina de vapor y los utilizados en los cohetes y aviones a reacción.

La utilidad de una máquina simple radica en que permite ejercer una fuerza mayor que la que una persona podría aplicar sólo con sus músculos (en el caso de la palanca, el torno y el plano inclinado), o aplicarla de forma más eficaz (en el caso de la polea). El aumento de la fuerza suele hacerse a expensas de la velocidad. La relación entre la fuerza aplicada y la resistencia ofrecida por la carga contra la que actúa la fuerza se denomina ventaja teórica de la máquina. Debido a que todas las máquinas deben superar algún tipo de rozamiento cuando realizan su trabajo, la ventaja real de la máquina siempre es menor que la ventaja teórica. La eficacia de funcionamiento de una máquina se obtiene del cociente entre la energía generada (la salida) y la cantidad de energía empleada (la entrada). La eficacia, que se expresa en tanto por ciento, siempre inferior al 100 por ciento.

Combinando máquinas simples se construyen máquinas complejas. Con estas máquinas complejas, a su vez, se construye todo tipo de máquinas utilizadas en metalistería, carpintería y otras áreas de la ingeniería.

Estas máquinas son las llamadas máquina herramienta o máquina estacionaria y motorizada que se utiliza para dar forma o modelar materiales sólidos, especialmente metales. El modelado se consigue eliminando parte del material de la pieza o estampándola con una forma determinada. Son la base de la industria moderna y se utilizan directa o indirectamente para fabricar piezas de máquinas y herramientas.

Estas máquinas pueden clasificarse en tres categorías: máquinas desbastadoras convencionales, prensas y máquinas herramientas especiales. Las máquinas desbastadoras convencionales dan forma a la pieza cortando la parte no deseada del material y produciendo virutas. Las prensas utilizan diversos métodos de modelado, como cizallamiento, prensado o estirado. Las máquinas herramientas especiales utilizan la energía luminosa, eléctrica, química o sonora, gases a altas temperaturas y haces de partículas de alta energía para dar forma a materiales especiales y aleaciones utilizadas en la tecnología moderna.

Entre las máquinas herramientas básicas se encuentran el torno, las perfiladoras, las cepilladoras y las fresadoras. Hay además máquinas taladradoras y perforadoras, pulidoras, sierras y diferentes tipos de máquinas para la deformación del metal.

Torno


El torno, la máquina giratoria más común y más antigua, sujeta una pieza de metal o de madera y la hace girar mientras un útil de corte da forma al objeto. El útil puede moverse paralela o perpendicularmente a la dirección de giro, para obtener piezas con partes cilíndricas o cónicas, o para cortar acanaladuras. Empleando útiles especiales un torno puede utilizarse también para obtener superficies lisas, como las producidas por una fresadora, o para taladrar orificios en la pieza.

Perfiladora


La perfiladora se utiliza para obtener superficies lisas. El útil se desliza sobre una pieza fija y efectúa un primer recorrido para cortar salientes, volviendo a la posición original para realizar el mismo recorrido tras un breve desplazamiento lateral. Esta máquina utiliza un útil de una sola punta y es lenta, porque depende de los recorridos que se efectúen hacia adelante y hacia atrás. Por esta razón no se suele utilizar en las líneas de producción, pero sí en fábricas de herramientas y troqueles o en talleres que fabrican series pequeñas y que requieren mayor flexibilidad.

Cepilladora


Esta es la mayor de las máquinas herramientas de vaivén. Al contrario que en las perfiladoras, donde el útil se mueve sobre una pieza fija, la cepilladora mueve la pieza sobre un útil fijo. Después de cada vaivén, la pieza se mueve lateralmente para utilizar otra parte de la herramienta. Al igual que la perfiladora, la cepilladora permite hacer cortes verticales, horizontales o diagonales. También puede utilizar varios útiles a la vez para hacer varios cortes simultáneos.

Fresadora


En las fresadoras, la pieza entra en contacto con un dispositivo circular que cuenta con varios puntos de corte. La pieza se sujeta a un soporte que controla el avance de la pieza contra el útil de corte. El soporte puede avanzar en tres direcciones: longitudinal, horizontal y vertical. En algunos casos también puede girar. Las fresadoras son las máquinas herramientas más versátiles. Permiten obtener superficies curvadas con un alto grado de precisión y un acabado excelente. Los distintos tipos de útiles de corte permiten obtener ángulos, ranuras, engranajes o muescas.

Taladradoras y perforadoras


Las máquinas taladradoras y perforadoras se utilizan para abrir orificios, para modificarlos o para adaptarlos a una medida o para rectificar o esmerilar un orificio a fin de conseguir una medida precisa o una superficie lisa.

Hay taladradoras de distintos tamaños y funciones, desde taladradoras portátiles a radiales, pasando por taladradoras de varios cabezales, máquinas automáticas o máquinas de perforación de gran longitud.

La perforación implica el aumento de la anchura de un orificio ya taladrado. Esto se hace con un útil de corte giratorio con una sola punta, colocado en una barra y dirigido contra una pieza fija. Entre las máquinas perforadoras se encuentran las perforadoras de calibre y las fresas de perforación horizontal y vertical.

Las máquinas hidráulicas transmiten la energía a través de un fluido, utilizado para canalizar las fuerzas a distancias donde los acoplamientos mecánicos no serían apropiados ni efectivos. En el caso de los frenos de un automóvil la fuerza aplicada en el pedal se transmite por una conducción hidráulica hasta el activador del freno en cada llanta o rueda.


TRABAJO


El producto de una fuerza aplicada sobre un cuerpo y del desplazamiento del cuerpo en la dirección de esta fuerza. Mientras se realiza trabajo sobre el cuerpo, se produce una transferencia de energía al mismo, por lo que puede decirse que el trabajo es energía en movimiento. Las unidades de trabajo son las mismas que las de energía. Cuando se levanta un objeto desde el suelo hasta la superficie de una mesa, por ejemplo, se realiza trabajo al tener que vencer la fuerza de la gravedad, dirigida hacia abajo; la energía comunicada al cuerpo por este trabajo aumenta su energía potencial. También se realiza trabajo cuando una fuerza aumenta la velocidad de un cuerpo, como ocurre por ejemplo en la aceleración de un avión por el empuje de sus reactores.

La aceleración es la variación de la velocidad de un objeto por unidad de tiempo. La velocidad se define como vector, es decir, tiene módulo (magnitud), dirección y sentido. De ello se deduce que un objeto se acelera si cambia su celeridad (la magnitud de la velocidad), su dirección de movimiento, o ambas cosas. Si se suelta un objeto y se deja caer libremente, resulta acelerado hacia abajo. Si se ata un objeto a una cuerda y se le hace girar en círculo por encima de la cabeza con celeridad constante, el objeto también experimenta una aceleración uniforme; en este caso, la aceleración tiene la misma dirección que la cuerda y está dirigida hacia la mano de la persona.

Cuando la celeridad de un objeto disminuye, se dice que decelera. La deceleración es una aceleración negativa.

Un objeto sólo se acelera si se le aplica una fuerza. Según la segunda ley del movimiento de Newton, el cambio de velocidad es directamente proporcional a la fuerza aplicada.

La fuerza puede no ser mecánica, como ocurre en el levantamiento de un cuerpo o en la aceleración de un avión de reacción; también puede ser una fuerza electrostática, electrodinámica o de tensión superficial. Por otra parte, si una fuerza constante no produce movimiento, no se realiza trabajo. Por ejemplo, el sostener un libro con el brazo extendido no implica trabajo alguno sobre el libro, independientemente del esfuerzo necesario.

La unidad de trabajo en el Sistema Internacional de Unidades es el julio, que se define como el trabajo realizado por una fuerza de 1 newton a lo largo de un metro. El trabajo realizado por unidad de tiempo se conoce como potencia. La potencia correspondiente a un julio por segundo es un vatio.

POTENCIA

La potencia es el trabajo, o transferencia de energía, realizado por unidad de tiempo. El trabajo es igual a la fuerza aplicada para mover un objeto multiplicada por la distancia a la que el objeto se desplaza en la dirección de la fuerza. La potencia mide la rapidez con que se realiza ese trabajo. En términos matemáticos, la potencia es igual al trabajo realizado dividido entre el intervalo de tiempo a lo largo del cual se efectúa dicho trabajo.

El concepto de potencia no se aplica exclusivamente a situaciones en las que se desplazan objetos mecánicamente. También resulta útil, por ejemplo, en electricidad. Imaginemos un circuito eléctrico con una resistencia. Hay que realizar una determinada cantidad de trabajo para mover las cargas eléctricas a través de la resistencia. Para moverlas más rápidamente —en otras palabras, para aumentar la corriente que fluye por la resistencia— se necesita más potencia.

La potencia siempre se expresa en unidades de energía divididas entre unidades de tiempo. La unidad de potencia en el Sistema Internacional es el vatio, que equivale a la potencia necesaria para efectuar 1 julio de trabajo por segundo. Una unidad de potencia tradicional es el caballo de vapor (CV), que equivale aproximadamente a 746 vatios.



Es la unidad tradicional para expresar la potencia mecánica, es decir, el trabajo mecánico que puede realizar un motor por unidad de tiempo; suele abreviarse por CV. En el Sistema Internacional de unidades, la unidad de potencia es el vatio; 1 caballo de vapor equivale a 736 vatios. Su valor original era, por definición, 75 kilográmetros por segundo.

La electricidad es la categoría de fenómenos físicos originados por la existencia de cargas eléctricas y por la interacción de las mismas. Cuando una carga eléctrica se encuentra estacionaria, o estática, produce fuerzas eléctricas sobre las otras cargas situadas en su misma región del espacio; cuando está en movimiento, produce además efectos magnéticos. Los efectos eléctricos y magnéticos dependen de la posición y movimiento relativos de las partículas con carga. En lo que respecta a los efectos eléctricos, estas partículas pueden ser neutras, positivas o negativas. La electricidad se ocupa de las partículas cargadas positivamente, como los protones, que se repelen mutuamente, y de las partículas cargadas negativamente, como los electrones, que también se repelen mutuamente. En cambio, las partículas negativas y positivas se atraen entre sí. Este comportamiento puede resumirse diciendo que las cargas del mismo signo se repelen y las cargas de distinto signo se atraen.

FORMAS DE ENERGÍA. CONSERVACIÓN DE LA ENERGÍA. ENERGÍA ÚTIL


La Energía es la capacidad de un sistema físico para realizar trabajo. La materia posee energía como resultado de su movimiento o de su posición en relación con las fuerzas que actúan sobre ella. La radiación electromagnética posee energía que depende de su frecuencia y, por tanto, de su longitud de onda. Esta energía se comunica a la materia cuando absorbe radiación y se recibe de la materia cuando emite radiación. La energía asociada al movimiento se conoce como energía cinética, mientras que la relacionada con la posición es la energía potencial. Por ejemplo, un péndulo que oscila tiene una energía potencial máxima en los extremos de su recorrido; en todas las posiciones intermedias tiene energía cinética y potencial en proporciones diversas. La energía se manifiesta en varias formas, entre ellas la energía mecánica, térmica, química, eléctrica, radiante o atómica. Todas las formas de energía pueden convertirse en otras formas mediante los procesos adecuados. En el proceso de transformación puede perderse o ganarse una forma de energía, pero la suma total permanece constante.

Un peso suspendido de una cuerda tiene energía potencial debido a su posición, puesto que puede realizar trabajo al caer. Una batería eléctrica tiene energía potencial en forma química. Un trozo de magnesio también tiene energía potencial en forma química, que se transforma en calor y luz si se inflama. Al disparar un fusil, la energía potencial de la pólvora se transforma en la energía cinética del proyectil. La energía cinética del rotor de una dinamo o alternador se convierte en energía eléctrica mediante la inducción electromagnética.

Esta energía eléctrica puede a su vez almacenarse como energía potencial de las cargas eléctricas en un condensador o una batería, disiparse en forma de calor o emplearse para realizar trabajo en un dispositivo eléctrico. Todas las formas de energía tienden a transformarse en calor, que es la forma más degradada de la energía. En los dispositivos mecánicos la energía no empleada para realizar trabajo útil se disipa como calor de rozamiento, y las pérdidas de los circuitos eléctricos se producen fundamentalmente en forma de calor.

Las observaciones empíricas del siglo XIX llevaron a la conclusión de que aunque la energía puede transformarse no se puede crear ni destruir. Este concepto, conocido como principio de conservación de la energía, constituye uno de los principios básicos de la mecánica clásica. Al igual que el principio de conservación de la materia, sólo se cumple en fenómenos que implican velocidades bajas en comparación con la velocidad de la luz.

Cuando las velocidades se empiezan a aproximar a la de la luz, como ocurre en las reacciones nucleares, la materia puede transformarse en energía y viceversa. En la física moderna se unifican ambos conceptos, la conservación de la energía y de la masa.

Ahorro de energía y efecto invernadero

Hay diversos métodos pero el más efectivo es quemar menos combustibles fósiles y en especial, combustibles ricos en carbono como el carbón y petróleo. Estos combustibles también tienen un alto contenido de azufre, que junto con nitrógeno provocan emisiones ácidas durante la combustión y causan la lluvia ácida. De ello se desprende que la protección del medio ambiente es hoy el mayor incentivo para el ahorro de energía. A largo plazo, también es importante el agotamiento de los recursos de combustibles fósiles no renovables. Al ritmo de consumo actual se calcula que las reservas de petróleo y gas durarán unos cincuenta años y las de carbón unos doscientos años.

La demanda creciente de combustibles fósiles y los daños por la contaminación derivados de su utilización han motivado llamadas de atención por parte de la Comisión Brutland (1987), entre otras, para ir avanzando hacia un desarrollo sostenible, un concepto que apoyan políticos de muchos países. La enorme dificultad para conseguir esta meta ha sido menospreciada a menudo. El Consejo Mundial de la Energía estima que las fuentes de energía renovables sólo podrán aportar un 30% de la demanda mundial en el año 2020 (aunque la cifra podría llegar a un 60% para el año 2100).

Por esta razón, la Unión Europea ha llevado a cabo numerosas iniciativas para estimular el ahorro de energía, estimando posible lograr un ahorro del 20%. El Consejo Mundial de la Energía ha aconsejado una reducción de la intensidad de la energía para el futuro en distintas zonas, teniendo en cuenta la cantidad de energía necesaria para producir una unidad del Producto Interior Bruto (PIB). En un informe de 1993, el Consejo Mundial de la Energía publicó sus estimaciones para un uso eficaz de la energía, situándolo en un 3 o 3,5% para los países medios, un 4-5% para Europa occidental y Japón, y sólo un 2% para Estados Unidos.

Métodos para un ahorro de energía eficaz


El ahorro de energía mediante el aumento de la eficacia en su manipulado puede lograrse, por lo que respecta a la parte del suministro, a través de avances tecnológicos en la producción de electricidad, mejora de los procesos en la refinerías y otros. En cambio, por lo que respecta a la parte de la demanda (la energía empleada para calefacción de edificios, aparatos eléctricos, iluminación…), se ha descuidado en relación con la parte del suministro, existiendo un margen amplio para su mejora. En Europa occidental el 40% del consumo final de energía se destina al sector doméstico, un 25% a la industria y un 30% al transporte.

MAGNETISMO

Es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.

Historia de su estudio

El fenómeno del magnetismo se conoce desde tiempos antiguos. La piedra imán o magnetita, un óxido de hierro que tiene la propiedad de atraer los objetos de hierro, ya era conocida por los griegos, los romanos y los chinos. Cuando se pasa una piedra imán por un pedazo de hierro, éste adquiere a su vez la capacidad de atraer otros pedazos de hierro. Los imanes así producidos están ‘polarizados’, es decir, cada uno de ellos tiene dos partes o extremos llamados polos norte y sur. Los polos iguales se repelen, y los polos opuestos se atraen.

La brújula se empezó a utilizar en Occidente como instrumento de navegación alrededor del 1300 d.C. En el siglo XIII, el erudito francés Petrus Peregrinus realizó importantes investigaciones sobre los imanes. Sus descubrimientos no se superaron en casi 300 años, hasta que el físico y médico británico William Gilbert publicó su libro, De magnete en 1600. Gilbert aplicó métodos científicos al estudio de la electricidad y el magnetismo.

Observó que la Tierra también se comporta como un imán gigante, y a través de una serie de experimentos investigó y refutó varios conceptos incorrectos sobre el magnetismo aceptados en la época. Posteriormente, en 1750, el geólogo británico John Michell inventó una balanza que utilizó para estudiar las fuerzas magnéticas. Michell demostró que la atracción o repulsión entre dos polos magnéticos disminuye a medida que aumenta el cuadrado de la distancia entre ellos. El físico francés Charles de Coulomb, que había medido las fuerzas entre cargas eléctricas, verificó posteriormente la observación de Michell con una gran precisión.

Teoría electromagnética

A finales del siglo XVIII y principios del XIX se investigaron simultáneamente las teorías de la electricidad y el magnetismo. En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente.

En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica. La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético.

Los estudios posteriores sobre el magnetismo se centraron cada vez más en la comprensión del origen atómico y molecular de las propiedades magnéticas de la materia. En 1905, el físico francés Paul Langevin desarrolló una teoría sobre la variación con la temperatura de las propiedades magnéticas de las sustancias paramagnéticas, basada en la estructura atómica de la materia.

Esta teoría es uno de los primeros ejemplos de la descripción de propiedades macroscópicas a partir de las propiedades de los electrones y los átomos. Posteriormente, la teoría de Langevin fue ampliada por el físico francés Pierre Ernst Weiss, que postuló la existencia de un campo magnético interno, molecular, en los materiales como el hierro. Este concepto, combinado con la teoría de Langevin, sirvió para explicar las propiedades de los materiales fuertemente magnéticos como la piedra imán.

Después de que Weiss presentara su teoría, las propiedades magnéticas se estudiaron de forma cada vez más detallada. La teoría del físico danés Niels Bohr sobre la estructura atómica, por ejemplo, hizo que se comprendiera la tabla periódica y mostró por qué el magnetismo aparece en los elementos de transición, como el hierro, en los lantánidos o en compuestos que incluyen estos elementos.

Los físicos estadounidenses Samuel Abraham Goudsmit y George Eugene Uhlenbeck demostraron en 1925 que los electrones tienen espín y se comportan como pequeños imanes con un ‘momento magnético’ definido. El momento magnético de un objeto es una magnitud vectorial (véase Vector) que expresa la intensidad y orientación del campo magnético del objeto. El físico alemán Werner Heisenberg dio una explicación detallada del campo molecular de Weiss en 1927, basada en la recientemente desarrollada mecánica cuántica (véase Teoría cuántica). Más tarde, otros científicos predijeron muchas estructuras atómicas del momento magnético más complejas, con diferentes propiedades magnéticas.


El campo magnético

Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas.

En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil.

Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza. La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas.

Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza. Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.

Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo.

Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafos de masas.


Tipos de materiales magnéticos

Las propiedades magnéticas de los materiales se clasifican siguiendo distintos criterios.

Una de las clasificaciones de los materiales magnéticos —que los divide en diamagnéticos, paramagnéticos y ferromagnéticos— se basa en la reacción del material ante un campo magnético. Cuando se coloca un material diamagnético en un campo magnético, se induce en él un momento magnético de sentido opuesto al campo. En la actualidad se sabe que esta propiedad se debe a las corrientes eléctricas inducidas en los átomos y moléculas individuales. Estas corrientes producen momentos magnéticos opuestos al campo aplicado. Muchos materiales son diamagnéticos; los que presentan un diamagnetismo más intenso son el bismuto metálico y las moléculas orgánicas que, como el benceno, tienen una estructura cíclica que permite que las corrientes eléctricas se establezcan con facilidad.

El comportamiento paramagnético se produce cuando el campo magnético aplicado alinea todos los momentos magnéticos ya existentes en los átomos o moléculas individuales que componen el material. Esto produce un momento magnético global que se suma al campo magnético. Los materiales paramagnéticos suelen contener elementos de transición o lantánidos con electrones desapareados.

El paramagnetismo en sustancias no metálicas suele caracterizarse por una dependencia de la temperatura: la intensidad del momento magnético inducido varía inversamente con la temperatura. Esto se debe a que al ir aumentando la temperatura, cada vez resulta más difícil alinear los momentos magnéticos de los átomos individuales en la dirección del campo magnético.

Las sustancias ferromagnéticas son las que, como el hierro, mantienen un momento magnético incluso cuando el campo magnético externo se hace nulo. Este efecto se debe a una fuerte interacción entre los momentos magnéticos de los átomos o electrones individuales de la sustancia magnética, que los hace alinearse de forma paralela entre sí. En circunstancias normales, los materiales ferromagnéticos están divididos en regiones llamadas ‘dominios’; en cada dominio, los momentos magnéticos atómicos están alineados en paralelo.

Los momentos de dominios diferentes no apuntan necesariamente en la misma dirección. Aunque un trozo de hierro normal puede no tener un momento magnético total, puede inducirse su magnetización colocándolo en un campo magnético, que alinea los momentos de todos los dominios. La energía empleada en la reorientación de los dominios desde el estado magnetizado hasta el estado desmagnetizado se manifiesta en un desfase de la respuesta al campo magnético aplicado, conocido como ‘histéresis’.

Un material ferromagnético acaba perdiendo sus propiedades magnéticas cuando se calienta. Esta pérdida es completa por encima de una temperatura conocida como punto de Curie, llamada así en honor del físico francés Pierre Curie, que descubrió el fenómeno en 1895. (El punto de Curie del hierro metálico es de unos 770 °C).




Paramagnetismo

El oxígeno líquido queda atrapado en el campo magnético de un electroimán, porque el oxígeno (O2) es paramagnético. El oxígeno tiene dos electrones desapareados cuyos momentos magnéticos se alinean con el campo magnético externo. Cuando esto ocurre, las moléculas de O2 se comportan como imanes minúsculos y quedan atrapadas entre los polos del electroimán.






Otros ordenamientos magnéticos

En los últimos años, una mejor comprensión de los orígenes atómicos de las propiedades magnéticas ha llevado al descubrimiento de otros tipos de ordenamiento magnético. Se conocen casos en los que los momentos magnéticos interactúan de tal forma que les resulta energéticamente favorable alinearse entre sí en sentido antiparalelo; estos materiales se llaman antiferromagnéticos. Existe una temperatura análoga al punto de Curie, llamada temperatura de Néel, por encima de la cual desaparece el orden antiferromagnético.

También se han hallado otras configuraciones más complejas de los momentos magnéticos atómicos. Las sustancias ‘ferrimagnéticas’ tienen al menos dos clases distintas de momento magnético atómico, que se orientan de forma antiparalela. Como ambos momentos tienen magnitudes diferentes, persiste un momento magnético neto, al contrario que en un material antiferromagnético, donde todos los momentos magnéticos se anulan entre sí. Curiosamente, la piedra imán es ferrimagnética, y no ferromagnética; en este mineral existen dos tipos de ion hierro, con momentos magnéticos diferentes. Se han encontrado disposiciones aún más complejas en las que los momentos magnéticos están ordenados en espiral. Los estudios de estos ordenamientos han proporcionado mucha información sobre las interacciones entre los momentos magnéticos en sólidos.


Aplicaciones

En los últimos 100 años han surgido numerosas aplicaciones del magnetismo y de los materiales magnéticos. El electroimán, por ejemplo, es la base del motor eléctrico y el transformador. En épocas más recientes, el desarrollo de nuevos materiales magnéticos ha influido notablemente en la revolución de los ordenadores o computadoras. Es posible fabricar memorias de computadora utilizando ‘dominios burbuja’. Estos dominios son pequeñas regiones de magnetización, paralelas o antiparalelas a la magnetización global del material. Según que el sentido sea uno u otro, la burbuja indica un uno o un cero, por lo que actúa como dígito en el sistema binario empleado por los ordenadores. Los materiales magnéticos también son componentes importantes de las cintas y discos para almacenar datos.



Los imanes grandes y potentes son cruciales en muchas tecnologías modernas. Los trenes de levitación magnética utilizan poderosos imanes para elevarse por encima de los raíles y evitar el rozamiento. En la exploración mediante resonancia magnética nuclear, una importante herramienta de diagnóstico empleada en medicina, se utilizan campos magnéticos de gran intensidad. Los imanes superconductores se emplean en los aceleradores de partículas más potentes para mantener las partículas aceleradas en una trayectoria curva y enfocarlas.


La base de datos está protegida por derechos de autor ©espanito.com 2016
enviar mensaje